6 resultados para Solution of mathematical problems
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Enthalpies of solution of 1-butyl-3-methylimidazolium tetra fluoroborate, [BMIm]BF4, are reported at 298.15 K in a set of 15 hydrogen bond donor and hydrogen bond acceptor solvents, chosen by their diversity, namely, water, methanol, ethanol, 1,2-ethanediol, 2-choroethanol, 2-methoxyethanol, formamide, propylene carbonate, nitromethane, acetonitrile, dimethyl sulfoxide, acetone, N,N-dimethylformamide, N,N-dimethylacetamide, and aniline. These values are shown to be largely independent of [BMIm]BF4 concentration. The obtained enthalpies of solution vary from very endothermic to quite exothermic, thus showing a very high sensitivity of the enthalpies of solution of [BMIm]BF4 to solvent properties. Solvent effects on the solution process of this IL are analyzed by a quantitative structure-property relationship methodology, using the TAKA equation and a modified equation, which significantly improves the model's predictive ability. The observed differences in the enthalpies of solution are rationalized in terms of the solvent properties found to be relevant, that is, pi* and E-T(N).
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º ciclo do Ensino Básico
Resumo:
In this work, we present the explicit series solution of a specific mathematical model from the literature, the Deng bursting model, that mimics the glucose-induced electrical activity of pancreatic beta-cells (Deng, 1993). To serve to this purpose, we use a technique developed to find analytic approximate solutions for strongly nonlinear problems. This analytical algorithm involves an auxiliary parameter which provides us with an efficient way to ensure the rapid and accurate convergence to the exact solution of the bursting model. By using the homotopy solution, we investigate the dynamical effect of a biologically meaningful bifurcation parameter rho, which increases with the glucose concentration. Our analytical results are found to be in excellent agreement with the numerical ones. This work provides an illustration of how our understanding of biophysically motivated models can be directly enhanced by the application of a newly analytic method.
Resumo:
The presence of entrapped air in pressurized hydraulic systems is considered a critical condition for the infrastructure security, due to the transient pressure enhancement related with its dynamic behaviour, similar to non-linear spring action. A mathematical model for the assessment of hydraulic transients resulting from rapid pressurizations, under referred condition is presented. Water movement was modeled through the elastic column theory considering a moving liquid boundary and the entrapped air pocket as lumped gas mass, where the acoustic effects are negligible. The method of characteristics was used to obtain the numerical solution of the liquid flow. The resulting model is applied to an experimental set-up having entrapped air in the top of a vertical pipe section and the numerical results are analyzed.
Resumo:
Thirty years ago, G.N. de Oliveira has proposed the following completion problems: Describe the possible characteristic polynomials of [C-ij], i,j is an element of {1, 2}, where C-1,C-1 and C-2,C-2 are square submatrices, when some of the blocks C-ij are fixed and the others vary. Several of these problems remain unsolved. This paper gives the solution, over the field of real numbers, of Oliveira's problem where the blocks C-1,C-1, C-2,C-2 are fixed and the others vary.
Resumo:
The purpose of this paper is to discuss the linear solution of equality constrained problems by using the Frontal solution method without explicit assembling. Design/methodology/approach - Re-written frontal solution method with a priori pivot and front sequence. OpenMP parallelization, nearly linear (in elimination and substitution) up to 40 threads. Constraints enforced at the local assembling stage. Findings - When compared with both standard sparse solvers and classical frontal implementations, memory requirements and code size are significantly reduced. Research limitations/implications - Large, non-linear problems with constraints typically make use of the Newton method with Lagrange multipliers. In the context of the solution of problems with large number of constraints, the matrix transformation methods (MTM) are often more cost-effective. The paper presents a complete solution, with topological ordering, for this problem. Practical implications - A complete software package in Fortran 2003 is described. Examples of clique-based problems are shown with large systems solved in core. Social implications - More realistic non-linear problems can be solved with this Frontal code at the core of the Newton method. Originality/value - Use of topological ordering of constraints. A-priori pivot and front sequences. No need for symbolic assembling. Constraints treated at the core of the Frontal solver. Use of OpenMP in the main Frontal loop, now quantified. Availability of Software.