5 resultados para Short-form Epq-r-s
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Background: Poor nutritional status and worse health-related quality of life (QoL) have been reported in haemodialysis (HD) patients. The utilization of generic and disease specific QoL questionnaires in the same population may provide a better understanding of the significance of nutrition in QoL dimensions. Objective: To assess nutritional status by easy to use parameters and to evaluate the potential relationship with QoL measured by generic and disease specific questionnaires. Methods: Nutritional status was assessed by subjective global assessment adapted to renal patients (SGA), body mass index (BMI), nutritional intake and appetite. QoL was assessed by the generic EuroQoL and disease specific Kidney Disease Quality of Life-Short Form (KDQoL-SF) questionnaires. Results: The study comprised 130 patients of both genders, mean age 62.7 ± 14.7 years. The prevalence of undernutrition ranged from 3.1% by BMI ≤ 18.5 kg/m2 to 75.4% for patients below energy and protein intake recommendations. With the exception of BMI classification, undernourished patients had worse scores in nearly all QoL dimensions (EuroQoL and KDQoL-SF), a pattern which was dominantly maintained when adjusted for demographics and disease-related variables. Overweight/obese patients (BMI ≥ 25) also had worse scores in some QoL dimensions, but after adjustment the pattern was maintained only in the symptoms and problems dimension of KDQoL-SF (p = 0.011). Conclusion: Our study reveals that even in mildly undernourished HD patients, nutritional status has a significant impact in several QoL dimensions. The questionnaires used provided different, almost complementary perspectives, yet for daily practice EuroQoL is simpler. Assuring a good nutritional status, may positively influence QoL.
Resumo:
Mestrado em Segurança e Higiene no Trabalho
Resumo:
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.
Resumo:
In man brain cancer is an aggressive, malignant form of tumour, it is highly infiltrative in nature, is associated with cellular heterogeneity and affects cerebral hemispheres of the brain. Current drug therapies are inadequate and an unmet clinical need exists to develop new improved therapeutics. The ability to silence genes associated with disease progression by using short interfering RNA (siRNA) presents the potential to develop safe and effective therapies. In this work, in order to protect the siRNA from degradation, promote cell specific uptake and enhance gene silencing efficiency, a PEGylated cyclodextrin (CD)-based nanoparticle, tagged with a CNS-targeting peptide derived from the rabies virus glycoprotein (RVG) was formulated and characterized. The modified cyclodextrin derivatives were synthesized and co-formulated to form nanoparticles containing siRNA which were analysed for size, surface charge, stability, cellular uptake and gene-knockdown in brain cancer cells. The results identified an optimised co-formulation prototype at a molar ratio of 1:1.5:0.5 (cationic cyclodextrin:PEGylated cyclodextrin:RVG-tagged PEGylated cyclodextrin) with a size of 281±39.72nm, a surface charge of 26.73±3mV, with efficient cellular uptake and a 27% gene-knockdown ability. This CD-based formulation represents a potential nanocomplex for systemic delivery of siRNA targeting brain cancer.
Resumo:
Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.