13 resultados para Search filters
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.
Resumo:
We study the implications of the searches based on H -> tau(+)tau-by the ATLAS and CMS collaborations on the parameter space of the two-Higgs-doublet model (2HDM). In the 2HDM, the scalars can decay into a tau pair with a branching ratio larger than the SM one, leading to constraints on the 2HDM parameter space. We show that in model II, values of tan beta > 1.8 are definitively excluded if the pseudoscalar is in the mass range 110 GeV < m(A) < 145 GeV. We have also discussed the implications for the 2HDM of the recent dimuon search by the ATLAS collaboration for a CP-odd scalar in the mass range 4-12 GeV.
Resumo:
The characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.
Resumo:
This paper reports on optical filters based on a-SiC:H tandem pi'n/pin heterostructures. The spectral sensitivity is analyzed. Steady state optical bias with different wavelengths are applied from each front and back sides and the photocurrent is measured. Results show that it is possible to control the sensitivity of the device and to tune a specific wavelength range by combining radiations with complementary light penetration depths. The transfer characteristics effects due to changes in the front and back optical bias wavelength are discussed. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels.
Resumo:
Tunable wavelength division multiplexing converters based on amorphous SiC multilayer photonic active filters are analyzed. The configuration includes two stacked p-i-n structures (p(a-SiC:H)-i'(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts. The manipulation of the magnitude is achieved through appropriated front and back backgrounds. Transfer function characteristics are studied both theoretically and experimentally. An algorithm to decode the multiplex signal is established. An optoelectronic model supports the optoelectronic logic architecture. Results show that the light-activated device combines the demultiplexing operation with the simultaneous photodetection and self-amplification of an optical signal. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. Depending on the wavelength of the external background and irradiation side, it acts either as a short- or a long-pass band filter or as a band-stop filter. A two-stage active circuit is presented and gives insight into the physics of the device.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si: H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions.
Resumo:
Visible range to telecom band spectral translation is accomplished using an amorphous SiC pi'n/pin wavelength selector under appropriate front and back optical light bias. Results show that background intensity works as selectors in the infrared region, shifting the sensor sensitivity. Low intensities select the near-infrared range while high intensities select the visible part according to its wavelength. Here, the optical gain is very high in the infrared/red range, decreases in the green range, stays close to one in the blue region and strongly decreases in the near-UV range. The transfer characteristics effects due to changes in steady state light intensity and wavelength backgrounds are presented. The relationship between the optical inputs and the output signal is established. A capacitive optoelectronic model is presented and tested using the experimental results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The aim of this study is to evaluate lighting conditions and speleologists’ visual performance using optical filters when exposed to the lighting conditions of cave environments. A crosssectional study was conducted. Twenty-three speleologists were submitted to an evaluation of visual function in a clinical lab. An examination of visual acuity, contrast sensitivity, stereoacuity and flashlight illuminance levels was also performed in 16 of the 23 speleologists at two caves deprived of natural lightning. Two organic filters (450 nm and 550 nm) were used to compare visual function with and without filters. The mean age of the speleologists was 40.65 (± 10.93) years. We detected 26.1% participants with visual impairment of which refractive error (17.4%) was the major cause. In the cave environment the majority of the speleologists used a head flashlight with a mean illuminance of 451.0 ± 305.7 lux. Binocular visual acuity (BVA) was -0.05 ± 0.15 LogMAR (20/18). BVA for distance without filter was not statistically different from BVA with 550 nm or 450 nm filters (p = 0.093). Significant improved contrast sensitivity was observed with 450 nm filters for 6 cpd (p = 0.034) and 18 cpd (p = 0.026) spatial frequencies. There were no signs and symptoms of visual pathologies related to cave exposure. Illuminance levels were adequate to the majority of the activities performed. The enhancement in contrast sensitivity with filters could potentially improve tasks related with the activities performed in the cave.
Resumo:
Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests