3 resultados para SPLIT RAMUS OSTEOTOMY

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the cosmological evolution of asymmetries in the two-Higgs doublet extension of the Standard Model, prior to the electroweak phase transition. If Higgs flavour-exchanging interactions are sufficiently slow, then a relative asymmetry among the Higgs doublets corresponds to an effectively conserved quantum number. Since the magnitude of the Higgs couplings depends on the choice of basis in the :Higgs doublet space, we attempt to formulate basis-independent out-of-equilibrium conditions. We show that an initial asymmetry between the fliggs scalars, which could be generated by GP violation in the :Higgs sector, will be transformed into a baryon asymmetry by the sphalerons, without the need of B - L violation. This novel mechanism of baryogenesis through (split) Higgsogenesis is exemplified with simple scenarios based on the out-of-equilibrium decay of heavy singlet scalar fields into the illiggs doublets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.