11 resultados para Ricinoleic acid esters
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such astemperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pretreatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in thetransesterification reaction for the production of biodiesel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We show photorheology in aqueous solutions of weakly entangled wormlike micelles prepared with cetyltrimethylammonium bromide (CTAB), salicylic acid (HSal), and dilute amounts of the photochromic multistate compound trans-2,4,4'-trihydroxychalcone (Ct). Different chemical species of Ct are associated with different colorations and propensities to reside within or outside CTAB micelles. A light-induced transfer between the intra- and intermicellar space is used to alter the mean length of wormlike micelles and hence the rheological properties of the fluid, studied in steady-state shear Bow and in dynamic rheological measurements. Light-induced changes of fluid rheology are reversible by a the relaxation process. at relaxation rates which depend on pH and which are consistent with photochromic reversion rates measured by UV-vis absorption spectroscopy. Parameterizing viscoelostic rheological states by their effective relaxation time tau(c) and corresponding response modulus G(c), we find the light and dark states of the system to fall onto a characteristic state curve defined by comparable experiments conducted without photosensitive components. These reference experiments were prepared with the same concentration of CTAB, but different concentrations of HSal or sodium salicylote (NaSal), and tested at different temperatures.
Resumo:
This paper describes preliminary work done towards the development of new metallic heterogeneous catalysts to be used in the transesterification reaction of triglycerides, which is of considerable interest in the production of biodiesel. Biodiesel, is a mixture of mono-alkyl esters of fatty acids, and is currently manufactured by transesterification of triglycerides with methanol using NaOH or KOH as liquid base catalyst. Catalysts as such are corrosive to the equipment, and as these catalysts are in liquid phase must be neutralized after the completion of the reaction, typically using HCl, thus producing salt streams. Moreover, due to the presence of free fatty acids it reacts to form soaps as unwanted by-products, hence requiring more expensive separation processes. Therefore, there is a great need on the development of industrial processes for biodiesel production using solid acid catalysts. The key benefit of using solid acid catalysts is that no polluting by-products are formed and the catalysts do not have to be removed since they do not mix with the biodiesel product.
Resumo:
Intact cells from Pseudomonas aeruginosa strain L10 containing amidase were used as biocatalysts both free and immobilized in a reverse micellar system. The apparent kinetic constants for the transamidation reaction in hydroxamic acids synthesis, were determined using substrates such as aliphatic, amino acid and aromatic amides and esters, in both media. In reverse micelles, K-m values decreased 2-7 fold relatively to the free biocatalyst using as substrates acetamide, acrylamide, propionamide and glycinamide ethyl ester. We have concluded that overall the affinity of the biocatalyst to each substrate increases when reactions are performed in the reversed micellar system as opposed to the buffer system. The immobilized biocatalyst in general, exhibits higher stability and faster rates of reactions at lower substrates concentration relatively to the free form, which is advantageous. Additionally, the immobilization revealed to be suitable for obtaining the highest yields of hydroxamic acids derivatives, in some cases higher than 80%. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
New rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
Resumo:
The aim of this work is to study the risk of obesity posed by two genetic factors: haptoglobin phenotype and acid phosphatase phenotype, one enzymatic activity: acid phosphatase activity (ACP1), age and gender. Haptoglobin (Hp) is a protein of the immune system, and three phenotypes of Hp are found in humans: Hp1-1, Hp2-1, and Hp2-2. This protein is associated with a susceptibility to common pathological conditions, such as obesity. ACP1 is an intracellular enzyme The phenotypes of ACP1 (AA, AB, AC, BB, BC, CC) are also considered. We took a sample of 127 subjects with complete data from 714 registers. Since we intend to identify risk factors for obesity, an ordinal regression model is adjusted, using the Body Mass Index, BMI, to define weight categories. Haptoglobin phenotype, enzymatic activity of ACP1, acid phosphatase phenotype, age and gender are considered as regressor variables. We found three factors associated with an increased risk of obesity: phenotype Hp2-1 of haptoglobin (estimated odds ratio OR 11.54), phenotype AA of acid phosphatase (OR 33.788) and age (OR 1.39). The interaction between phenotype Hp2-1 and phenotype AC is associated with a decreased risk of obesity (OR 0.032); The interaction between phenotype AA and ACP1 activity is associated with a decreased risk of obesity (OR 0.954).
Resumo:
Rationale: Omega 3 fatty acids have been shown to be of potential benefit in patients with CD. The aim of the present study was to evaluate whether EPA can modulate the inflammatory response according to different genotypes of IL6G174G/C polymorphism. Methods: Peripheral blood cells were collected from CD patients with different genotypes for IL6 174G/C (GG, n = 16, GC, n = 8, CC, n = 7), and lymphocytes were established in culture media. Replicates with the addition of EPA (25 mM) were analysed in a period of 24h, 48h and 72h. Expression of IL6 e a PGE2 was assessed by ELISA. Apoptosis and cellular proliferation was determined by flow cytometry.
Resumo:
Hierarchical SAPO-11 was synthesized using a commercial Merck carbon as template. Oxidant acid treatments were performed on the carbon matrix in order to investigate its influence on the properties of SAPO-11. Structural, textural and acidic properties of the different materials were evaluated by XRD, SEM, N-2 adsorption, pyridine adsorption followed by IR spectroscopy and thermal analyses. The catalytic behavior of the materials (with 0.5 wt.% Pt, introduced by mechanic mixture with Pt/Al2O3), were studied in the hydroisomerization of n-decane. The hierarchical samples showed higher yields in monobranched isomers than typical microporous SAPO-11, as a direct consequence of the modification on both porosity and acidity, the later one being the most predominant. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.
Resumo:
New ortho-substituted arylhydrazones of barbituric acid, 5-(2-(2-hydroxyphenyl)hydrazono) pyrimidine-2,4,6(1H,3H,5H)-trione (H4L1) and the sodium salt of 2-(2-(2,4,6-trioxotetra-hydropyrimidin-5(2H)-ylidene)hydrazinyl) benzenesulfonic acid (H4L2), [Na(H3L2)(mu-H2O)(H2O)(2)](2) (1), were used in the synthesis of Cu-II, Co-II and Co-II/III complexes, [Cu(H2L1)(H2O)(im)]center dot 3H(2)O (im = imidazole) (2), [Co(H2O)(6)] [Co(H2L1)(2)](2)center dot 8H(2)O (3), [Co(H2L2)(im)(3)] (4), [Cu(H2L2)(im)(2)]center dot H2O (5) and [Co(H2O)(6)][H3L2](2)center dot 8H(2)O (6). The complexes are water soluble and the mono-or di-deprotonated ligands display different coordination modes, depending on the synthetic conditions. The electrochemical behaviour of all the compounds was investigated by cyclic voltammetry and controlled potential electrolysis, revealing that the ligands are also redox active. All the compounds were evaluated as catalysts for the peroxidative (with H2O2) oxidation of cyclohexane at room temperature. The compounds 2 and 3 are the most active ones (yields up to 21% and TON up to 213 are achieved, in the presence of 3).