25 resultados para Revonsuo, Antti: Inner presence: Consciousness as a biological phenomenon
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Anticancer activity of the new [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine) complex was evaluated in vitro against several human cancer cell lines, namely A2780, A2780CisR, HT29, MCF7, MDAMB231 and PC3. Remarkably, the IC50 values, placed in the nanomolar and sub-micromolar range, largely exceeded the activity of cisplatin. Binding to human serum albumin, either HSA (human serum albumin) or HSA(faf) (fatty acid-free human serum albumin) does not affect the complex activity. Fluorescence studies revealed that the present ruthenium complex strongly quench the intrinsic fluorescence of albumin. Cell death by the [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] complex was reduced in the presence of endocytosis modulators and at low temperature, suggesting an energy-dependent mechanism consistent with endocytosis. On the whole, the biological activity evaluated herein suggests that the complex could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.
Resumo:
Mesoporous carbon materials were prepared through template method approach using porous clay heterostructures (PCHs) as matrix and furfuryl alcohol as carbon precursor. Three PCHs prepared using amines with 8, 10 and 12 carbon atoms were used. The effect of several impregnation-polymerization cycles of the carbon precursor, the carbonization temperature and the need of a previous surface alumination were evaluated. The presence of two porosity domains was identified in all the carbon materials. These two domains comprise pores resulting from the carbonization of the polymer film formed in the inner structure of the PCH (domain I) and larger pores created by the clay particles aggregation (domain II). The predominance of the porosity associated to domain I or II can be achieved by choosing a specific amine to prepare the PCH matrix. Carbonization at 700 C led to the highest development of pores of domain I. In general, the second impregnation-polymerization cycle of furfuryl alcohol resulted in a small decrease of both types of porosity domains. Furthermore the previous acidification of the surface to create acidic sites proved to be unnecessary. The results showed the potential of PCHs as matrices to tailor the textural properties of carbons prepared by template mediated synthesis.
Resumo:
Although a great body of literature exists concerning the ingestion of food contaminated with aflatoxin, there are still few studies regarding mycotoxin inhalation in occupational settings. Since mycotoxins are relatively non-volatile, inhalation exposure is cause by inhalation of airborne fungal particulates or fungi-contaminated substrates that contain aflatoxin. We intend to know if there is occupational exposure to aflatoxin in Portuguese poultry and swine production. A total of 19 individuals (11 swine; 8 poultry) agreed and provided blood samples during the course of this investigation. Measurement of AFB1 was performed by ELISA. The samples were treated with pronase (Merck), wash in a Column C18 and purification was made with immunoaffinity columns (R.biopharma), specific for AFB1. It was applied statistical test (Mann-Whitney) to verified statistical difference in AFB1 results between the two settings. Results varied with concentrations from
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.
Resumo:
Como recurso natural fundamental à vida, a água e os ecossistemas aquáticos devem ser alvo de avaliação contínua, no que se reporta à sua qualidade física, química e biológica. Segundo a Organização Mundial de Saúde cerca de 1,1 biliões de pessoas estão impossibilitadas em aceder a qualquer tipo de água potável e, as populações residentes nas proximidades de rios, lagoas, e reservatórios utilizam estas águas para as suas necessidades de consumo, aumentando o risco de transmissão de doenças. Enquanto constituintes da comunidade fitoplanctónica, as cianobactérias são microrganismos procariotas, fotossintéticos, que obtêm os nutrientes diretamente da coluna de água e, um aumento da concentração de nutrientes (principalmente azoto e fósforo), associado a condições ambientais favoráveis, pode desencadear um crescimento rápido originando fluorescências. Sob determinadas condições as cianobactérias podem produzir toxinas existindo registos que evidenciam que fluorescências toxicas são responsáveis pelo envenenamento agudo e morte de animais e humanos pelo que, a água utilizada para consumo humano deverá ser regularmente monitorizada para este elemento biológico. O objetivo deste estudo é relacionar a ocorrência de fluorescências de cianobactérias (> 2000 cel/ml) e toxicidade associada, com o impacte potencial na Saúde Pública avaliado através do consumo direto ou indireto da água. Em Portugal foram selecionados oito reservatórios situados na região Sul, pertencentes às bacias hidrográficas do Sado e Guadiana e estudados entre 2000 e 2008. No Brasil foram selecionados os reservatórios de Três Marias (Estado de Minas Gerais) e de Tucuruí (Estado do Pará) e estudados em 2005 e 2006 respetivamente. Os reservatórios foram caracterizados em termos físicos e químicos, tendo-se igualmente procedido à caracterização da comunidade fitoplanctónica através da identificação e quantificação dos principais grupos presentes em diferentes épocas do ano. Em termos fitoplanctónicos os reservatórios portugueses apresentaram maior diversidade,verificando-se contudo dominância das cianobactérias na comunidade. Associados a fluorescências, foram registados nestes reservatórios géneros produtores de hepato e neurotoxinas como Aphanizomenon sp, Microcystis aeruginosa e Oscillatoria sp. No Brasil, em situação de fluorescências, os géneros produtores de neuro e hepatotoxinas foram Microcystis (> 350.000 cels/ml) e Cylindrospermopsis. A presença destes géneros, poderá constituir um risco potencial para a saúde pública, pelo que é importante a implementação de medidas de mitigação em todos os reservatórios objeto de estudo, devendo essa atuação passar pelo controle do estado trófico no sentido de evitar o desenvolvimento de fluorescências. Assim sugere-se a implementação de um tratamento adequado para a produção de água de consumo e a organização de ações de sensibilização e aviso e informação às populações que utilizam os reservatórios em Portugal e no Brasil para diversos usos. - ABSTRACT - As a life fundamental natural resource, water and aquatic ecosystems must be continuously evaluated in their physical, chemical and biological quality. According World Health Organization, 1.1 billion people has no chance to access any kind of potable water. Populations living near rivers, lagoons or reservoirs use those waters to content their needs, increasing risks disease transmission. As members of phytoplankton community, cyanobacteria are prokaryotic, photosynthetic microorganisms and get its nutrients directly from water column. The increase of this nutrients (especially nitrogen and phosphorus) associated with favorable environment conditions, can support a sudden grow and instigate blooms. Under specific conditions cyanobacteria can produce toxins and several records have shown that toxic blooms are responsible by acute poisoning and death in animals and humans so, water for human consumption must be regularly surveyed for this biologic element. The aim of this study is to correlate Cyanobacteria blooms (>2.000cels/ml) and connected toxicity with public health impact, evaluated through water consumption. In Portugal, eight reservoirs located in the South region were selected and study between 2000 and 2008. In Brazil, Três Marias reservoir (Minas Gerais Provence) and Tucuruí (Pará Provence) were selected and study in 2005 and 2006. Reservoirs were characterized in physical and chemical aspects, as well as phytoplankton community, through identification and counting of main present groups along study period. In bloom circumstances, liver toxins and neurotoxins producers like Aphanizomenon sp, Microcystis aeruginosa and Oscillatoria sp. were founded in Portuguese reservoirs. In Brazil, cyanobacteria genera involved in toxic bloom were Microcystis (> 350.000 cels/ml) and Cylindrospermopsis. This genera presence represents a potential risk for public health, and show the requirement to implement mitigation measures in all study reservoirs. These measures can be represented by water eutrophication control to avoid blooms, by appropriate treatments of water to human consumption, and public warnings or information to dose people in Portugal and Brazil that use these reservoirs to several activities.
Resumo:
Background: A common task in analyzing microarray data is to determine which genes are differentially expressed across two (or more) kind of tissue samples or samples submitted under experimental conditions. Several statistical methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic background that are often unknown to the experimenter. For instance, in experiments which involve molecular classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical tool which not only identifies genes with up and down regulations, but also genes with differential expression in different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures of distance between samples, namely the overlapping coefficient (OVL) between two densities and the area under the receiver operating characteristic (ROC) curve. The methodology proposed here was implemented in the open-source R software. Results: This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our results with the ones obtained using some of the standard methods for detecting differentially expressed genes, namely Welch t-statistic, fold change (FC), rank products (RP), average difference (AD), weighted average difference (WAD), moderated t-statistic (modT), intensity-based moderated t-statistic (ibmT), significance analysis of microarrays (samT) and area under the ROC curve (AUC). On both datasets all differentially expressed genes with bimodal or multimodal distributions were not selected by all standard selection procedures. We also compared our results with (i) area between ROC curve and rising area (ABCR) and (ii) the test for not proper ROC curves (TNRC). We found our methodology more comprehensive, because it detects both bimodal and multimodal distributions and different variances can be considered on both samples. Another advantage of our method is that we can analyze graphically the behavior of different kinds of differentially expressed genes. Conclusion: Our results indicate that the arrow plot represents a new flexible and useful tool for the analysis of gene expression profiles from microarrays.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report the nucleotide sequence of a 17,893 bp DNA segment from the right arm of Saccharomyces cerevisiae chromosome VII. This fragment begins at 482 kb from the centromere. The sequence includes the BRF1 gene, encoding TFIIIB70, the 5' portion of the GCN5 gene, an open reading frame (ORF) previously identified as ORF MGA1, whose translation product shows similarity to heat-shock transcription factors and five new ORFs. Among these, YGR250 encodes a polypeptide that harbours a domain present in several polyA binding proteins. YGR245 is similar to a putative Schizosaccharomyces pombe gene, YGR248 shows significant similarity with three ORFs of S. cerevisiae situated on different chromosomes, while the remaining two ORFs, YGR247 and YGR251, do not show significant similarity to sequences present in databases.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
The impact of mycotoxins on human and animal health is well recognized. Aflatoxin B1 (AFB1) is by far the most prevalent and the most potent natural carcinogen and is usually the major aflatoxin produced by toxigenic fungal strains. Data available, points to an increasing frequency of poultry feed contamination by aflatoxins. Since aflatoxin residues may accumulate in body tissues, this represents a high risk to human health. Samples from commercial poultry birds have already presented detectable levels of aflatoxin in liver. A descriptive study was developed in order to assess fungal contamination by species from Aspergillus flavus complex in seven Portuguese poultry units. Air fungal contamination was studied by conventional and molecular methods. Air, litter and surfaces samples were collected. To apply molecular methods, air samples of 300L were collected using the Coriolis μ air sampler (Bertin Technologies), at 300 L/min airflow rate. For conventional methodologies, all the collected samples were incubated at 27ºC for five to seven days. Through conventional methods, Aspergillus flavus was the third fungal species (7%) most frequently found in 27 indoor air samples analysed and the most commonly isolated species (75%) in air samples containing only the Aspergillus genus...