6 resultados para Recovery of company
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.
Resumo:
Introduction - Cerebrovascular diseases, and among them, cerebral vascular accidents, are one of the main causes of morbidity and disability at European Union countries. Clinical framework resulting from these diseases include important limitations in functional ability of the these patients Postural control dysfunctions are one of the most common and devastating consequences of a stroke interfering with function and autonomy and affecting different aspects of people’s life and contributing to decrease quality of life. Neurological physiotherapy plays a central role in the recovery of movement and posture, however it is necessary to study the efficacy of techniques that physiotherapists use to treat these problems. Objectives - The aim of this study was to investigate the effects of a physiotherapy intervention program, based on oriented tasks and strengthening of the affected lower limb, on balance and functionality of individuals who have suffered a stroke. In addition our study aimed to investigate the effect of strength training of the affected lower limb on muscle tone.
Resumo:
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.
Resumo:
The scientific evidence supporting the management of the chronically ill in a positive psychological perspective in opposition to traditional pathological approach is scarce. This study examines issues associated with recovery of health status in heart failure, in particular hope, affection, and happiness. We use a longitudinal study of 128 symptomatic patients who after medical intervention reported improved quality of life and function at 3-month follow-up. We evaluated the contribution of happiness, hope and affection, individually and as a whole, in the quality of life and functionality of individuals with heart failure. Happiness (Subjective Happiness Scale), Hope (HOPE Scale), and affection (PANAS (positive and negative affect schedule)) were determined before medical intervention. Individually, we found that happiness is correlated with the quality of life and functionality, hope to self-efficacy dimension of the quality of life scale, positive affect to functionality and negative affect with symptoms dimension, quality of life dimension, and overall sum of the quality of life scale. Overall, we found that happiness has a unique contribution to the quality of life, except in self-efficacy dimension where hope takes this contribution and positive affect has a unique contribution to the functionality in this short-term follow-up. The results highlight the importance of positive variables to health outcomes for people with heart failure and should be considered in intervention programs for this syndrome.
Resumo:
Basidiomycete strains synthesize several types of beta-D-glucans, which play a major role in the medicinal properties of mushrooms. Therefore, the specific quantification of these beta-D-glucans in mushroom strains is of great biochemical importance. Because published assay methods for these beta-D-glucans present some disadvantages, a novel colorimetric assay method for beta-D-glucan with alcian blue dye was developed. The complex formation was detected by following the decrease in absorbance in the range of 620 nm and by hypsochromic shift from 620 to 606 nm (similar to 14 nm) in UV-Vis spectrophotometer. Analysis of variance was used for optimization of the slope of the calibration curve by using the assay mixture containing 0.017% (w/v) alcian blue in 2% (v/v) acetic acid at pH 3.0. The high-throughput colorimetric assay method on microtiter plates was used for quantification of beta-D-glucans in the range of 0-0.8 mu g, with a slope of 44.15 x 10(-2) and a limit of detection of 0.017 mu g/well. Recovery experiments were carried out by using a sample of Hericium erinaceus, which exhibited a recovery of 95.8% for beta-1,3-D-glucan. The present assay method exhibited a 10-fold higher sensitivity and a 59-fold lower limit of detection compared with the published method with congo red beta-D-glucans of several mushrooms strains were isolated from fruiting bodies and mycelia, and they were quantified by this assay method. This assay method is fast, specific, simple, and it can be used to quantify beta-D-glucans from other biological sources. (C) 2015 American Institute of Chemical Engineers
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.