5 resultados para Rasles, Sébastien, 1657-1724.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Este projecto pretende criar uma plataforma do tipo framework, para desenvolvimento de software que permita a implementação de sistemas biométricos de identificação e autenticação pessoal, usando sinais electrofisiológicos. O sinal electrocardiograma (ECG) é uma característica biométrica em ascensão, existindo fortes indícios de que contém informação suficiente para discriminar um indivíduo de um conjunto vasto de população. Usa-se a framework desenvolvida para criar aplicações que permitam avaliar o desempenho de várias abordagens do estado da arte do reconhecimento biométrico, baseadas no ECG. A arquitectura típica destes sistemas biométricos inclui blocos de aquisição, préprocessamento, extracção de características e classificação de sinais ECG, utilizando tipicamente duas abordagens distintas. Uma das abordagens (fiducial) assenta em pormenores dos diferentes segmentos da forma de onda do sinal ECG, enquanto que a outra abordagem (nonfiducial) tem a vantagem de não depender criticamente desses pormenores. Neste projecto ainda será explorada uma nova variante numa abordagem (non-fiducial) baseada em compressão de dados. Finalmente, pretende-se ainda estudar o desempenho destas abordagens em sinais ECG adquiridos nas mãos, o que constitui um desafio, dado não existirem actualmente estudos sistemáticos usando este tipo de sinais.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
Lidar com as problemáticas da saúde, implica um domínio dos processos cognitivos (raciocínio, resolução de problemas e tomada de decisão) e de desempenhos práticos, o que obriga a afectação de um conjunto de atitudes e comportamentos específicos. Este estudo, implementou e avaliou o impacto de experiências pedagógicas desenvolvidas com os estudantes da unidade curricular Radiologia do Sistema Nervoso (RSN) da Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL). Aplicaram-se metodologias de ensino mistas (presenciais e virtuais) utilizadas na leccionação teórica e prática no ano curricular 2008/2009. Para a avaliação do perfil de aprendizagem dos estudantes foi aplicado o método de Honey & Munford e para a avaliação e monitorização dos conhecimentos aplicaram-se check list baseadas nos conteúdos programáticos. A monitorização das ferramentas da plataforma moodle complementaram a restante informação. Verificou-se uma progressão de aprendizagem positiva para um grupo de estudantes maioritariamente do estilo reflexivo (média=10,6 estudantes). As conclusões apontaram para um impacto positivo quanto à aplicação das metodologias híbridas com maior índice de sucesso para a metodologia assíncrona. Verificou-se também mais flexibilidade no acesso aos conteúdos porém com algumas limitações tais como residência inicial por parte dos estudantes, maior carga de trabalho para os docentes, falta de terminais para acesso à plataforma e pouca experiência de todos os envolvidos no domínio e manipulação da plataforma. ABSTRACT - This study focused on the role of cognitive processes (reasoning, problem solving and decision making) and performance practice in the formation of attitudes and behaviours relating to health issues. It was conducted to evaluate the effects of pedagogical experiences on students who participated in the course in radiography in the Nervous System Imaging Unit (RSN) of the Lisbon Health School of Technology. Mixed (face-to-face and virtual) teaching methodologies were used in theory and practice sessions. Honey and Munford’s method was used to evaluate the learning profile of students. To monitor and evaluate students’ knowledge acquisition, check lists based on program topics were applied. Other information was supplied through the learning platform of Moodle. The student group with mostly a reflective learning style increased their knowledge. The asynchronous method was shown to produce a higher success rate and more flexibility in accessing content but also registered some limitations such as resistance by students, increased workload for teachers, lack of access to the platform and inexperience of all involved in handling the platform.
The use of non-standard CT conversion ramps for Monte Carlo verification of 6 MV prostate IMRT plans
Resumo:
Monte Carlo (MC) dose calculation algorithms have been widely used to verify the accuracy of intensity-modulated radiotherapy (IMRT) dose distributions computed by conventional algorithms due to the ability to precisely account for the effects of tissue inhomogeneities and multileaf collimator characteristics. Both algorithms present, however, a particular difference in terms of dose calculation and report. Whereas dose from conventional methods is traditionally computed and reported as the water-equivalent dose (Dw), MC dose algorithms calculate and report dose to medium (Dm). In order to compare consistently both methods, the conversion of MC Dm into Dw is therefore necessary. This study aims to assess the effect of applying the conversion of MC-based Dm distributions to Dw for prostate IMRT plans generated for 6 MV photon beams. MC phantoms were created from the patient CT images using three different ramps to convert CT numbers into material and mass density: a conventional four material ramp (CTCREATE) and two simplified CT conversion ramps: (1) air and water with variable densities and (2) air and water with unit density. MC simulations were performed using the BEAMnrc code for the treatment head simulation and the DOSXYZnrc code for the patient dose calculation. The conversion of Dm to Dw by scaling with the stopping power ratios of water to medium was also performed in a post-MC calculation process. The comparison of MC dose distributions calculated in conventional and simplified (water with variable densities) phantoms showed that the effect of material composition on dose-volume histograms (DVH) was less than 1% for soft tissue and about 2.5% near and inside bone structures. The effect of material density on DVH was less than 1% for all tissues through the comparison of MC distributions performed in the two simplified phantoms considering water. Additionally, MC dose distributions were compared with the predictions from an Eclipse treatment planning system (TPS), which employed a pencil beam convolution (PBC) algorithm with Modified Batho Power Law heterogeneity correction. Eclipse PBC and MC calculations (conventional and simplified phantoms) agreed well (<1%) for soft tissues. For femoral heads, differences up to 3% were observed between the DVH for Eclipse PBC and MC calculated in conventional phantoms. The use of the CT conversion ramp of water with variable densities for MC simulations showed no dose discrepancies (0.5%) with the PBC algorithm. Moreover, converting Dm to Dw using mass stopping power ratios resulted in a significant shift (up to 6%) in the DVH for the femoral heads compared to the Eclipse PBC one. Our results show that, for prostate IMRT plans delivered with 6 MV photon beams, no conversion of MC dose from medium to water using stopping power ratio is needed. In contrast, MC dose calculations using water with variable density may be a simple way to solve the problem found using the dose conversion method based on the stopping power ratio.
Resumo:
This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques – forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT – and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques – f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART – were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose–volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.