12 resultados para Radiality constraints in distribution systems
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Esta tese pretende contribuir para o estudo e análise dos factores relacionados com as técnicas de aquisição de imagens radiológicas digitais, a qualidade diagnóstica e a gestão da dose de radiação em sistema de radiologia digital. A metodologia encontra-se organizada em duas componentes. A componente observacional, baseada num desenho do estudo de natureza retrospectiva e transversal. Os dados recolhidos a partir de sistemas CR e DR permitiram a avaliação dos parâmetros técnicos de exposição utilizados em radiologia digital, a avaliação da dose absorvida e o índice de exposição no detector. No contexto desta classificação metodológica (retrospectiva e transversal), também foi possível desenvolver estudos da qualidade diagnóstica em sistemas digitais: estudos de observadores a partir de imagens arquivadas no sistema PACS. A componente experimental da tese baseou-se na realização de experiências em fantomas para avaliar a relação entre dose e qualidade de imagem. As experiências efectuadas permitiram caracterizar as propriedades físicas dos sistemas de radiologia digital, através da manipulação das variáveis relacionadas com os parâmetros de exposição e a avaliação da influência destas na dose e na qualidade da imagem. Utilizando um fantoma contraste de detalhe, fantomas antropomórficos e um fantoma de osso animal, foi possível objectivar medidas de quantificação da qualidade diagnóstica e medidas de detectabilidade de objectos. Da investigação efectuada, foi possível salientar algumas conclusões. As medidas quantitativas referentes à performance dos detectores são a base do processo de optimização, permitindo a medição e a determinação dos parâmetros físicos dos sistemas de radiologia digital. Os parâmetros de exposição utilizados na prática clínica mostram que a prática não está em conformidade com o referencial Europeu. Verifica-se a necessidade de avaliar, melhorar e implementar um padrão de referência para o processo de optimização, através de novos referenciais de boa prática ajustados aos sistemas digitais. Os parâmetros de exposição influenciam a dose no paciente, mas a percepção da qualidade de imagem digital não parece afectada com a variação da exposição. Os estudos que se realizaram envolvendo tanto imagens de fantomas como imagens de pacientes mostram que a sobreexposição é um risco potencial em radiologia digital. A avaliação da qualidade diagnóstica das imagens mostrou que com a variação da exposição não se observou degradação substancial da qualidade das imagens quando a redução de dose é efectuada. Propõe-se o estudo e a implementação de novos níveis de referência de diagnóstico ajustados aos sistemas de radiologia digital. Como contributo da tese, é proposto um modelo (STDI) para a optimização de sistemas de radiologia digital.
Resumo:
The current study focuses on the analysis of pressure surge damping in single pipeline systems generated by a fast change of flow, conditions. A dimensionless form of pressurised transient flow equations was developed. presenting the main advantage of being independent of the system characteristics. In lack of flow velocity profiles. the unsteady friction in turbulent regimes is analysed based on two new empirical corrective-coefficients associated with local and convective acceleration terms. A new, surge damping approach is also presented taking into account the pressure peak time variation. The observed attenuation effect in the pressure wave for high deformable pipe materials can be described by a combination of the non-elastic behaviour of the pipe-wall with steady and unsteady friction effects. Several simulations and experimental tests have been carried out. in order to analyse the dynamic response of single pipelines with different characteristics, such as pipe materials. diameters. thickness. lengths and transient conditions.
Resumo:
The assessment of patient dose has gained increased attention, still being an issue of concern that arises from the use of digital systems. The development of digital technology offers the possibility for a reduction of radiation dose around 50% without loss in image quality when compared to a conventional screen–film system. Digital systems give an equivalent or superior diagnostic performance and also several other advantages, but the risk of overexposure with no adverse effect on image quality could be present. This chapter refers to the management of patient dose and provides an explanation of dose-related concepts. In this chapter, exposure influence in dose and image representation and the effects of radiation exposure are also discussed.
Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems
Resumo:
The increasing integration of larger amounts of wind energy into power systems raises important operational issues, such as the balance between power generation and demand. The pumped storage hydro (PSH) units are one possible solution to mitigate this problem, once they can store the excess of energy in the periods of higher generation and lower demand. However, the behaviour of a PSH unit may differ considerably from the expected in terms of wind power integration when it operates in a liberalized electricity market under a price-maker context. In this regard, this paper models and computes the optimal PSH weekly scheduling in a price-taker and price-maker scenarios, either when the PSH unit operates in standalone and integrated in a portfolio of other generation assets. Results show that the price-maker standalone PSH will integrate less wind power in comparison with the price-taker situation. Moreover, when the PSH unit is integrated in a portfolio with a base load power plant, the role of the price elasticity of demand may completely change the operational profile of the PSH unit. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.
Resumo:
This paper presents a coordination approach to maximize the total profit of wind power systems coordinated with concentrated solar power systems, having molten-salt thermal energy storage. Both systems are effectively handled by mixed-integer linear programming in the approach, allowing enhancement on the operational during non-insolation periods. Transmission grid constraints and technical operating constraints on both systems are modeled to enable a true management support for the integration of renewable energy sources in day-ahead electricity markets. A representative case study based on real systems is considered to demonstrate the effectiveness of the proposed approach. © IFIP International Federation for Information Processing 2015.
Resumo:
In MIMO systems the antenna array configuration in the BS and MS has a large influence on the available channel capacity. In this paper, we first introduce a new Frequency Selective (FS) MIMO framework for macro-cells in a realistic urban environment. The MIMO channel is built over a previously developed directional channel model, which considers the terrain and clutter information in the cluster, line-of-sight and link loss calculations. Next, MIMO configuration characteristics are investigated in order to maximize capacity, mainly the number of antennas, inter-antenna spacing and SNR impact. Channel and capacity simulation results are presented for the city of Lisbon, Portugal, using different antenna configurations. Two power allocations schemes are considered, uniform distribution and FS spatial water-filling. The results suggest optimized MIMO configurations, considering the antenna array size limitations, specially at the MS side.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
The concerns on metals in urban wastewater treatment plants (WWTPs) are mainly related to its contents in discharges to environment, namely in the final effluent and in the sludge produced. In the near future, more restrictive limits will be imposed to final effluents, due to the recent guidelines of the European Water Framework Directive (EUWFD). Concerning the sludge, at least seven metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) have been regulated in different countries, four of which were classified by EUWFD as priority substances and two of which were also classified as hazardous substances. Although WWTPs are not designed to remove metals, the study of metals behaviour in these systems is a crucial issue to develop predictive models that can help more effectively the regulation of pre-treatment requirements and contribute to optimize the systems to get more acceptable metal concentrations in its discharges. Relevant data have been published in the literature in recent decades concerning the occurrence/fate/behaviour of metals in WWTPs. However, the information is dispersed and not standardized in terms of parameters for comparing results. This work provides a critical review on this issue through a careful systematization, in tables and graphs, of the results reported in the literature, which allows its comparison and so its analysis, in order to conclude about the state of the art in this field. A summary of the main consensus, divergences and constraints found, as well as some recommendations, is presented as conclusions, aiming to contribute to a more concerted action of future research. © 2015, Islamic Azad University (IAU).