1 resultado para REGRESSION TREES
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (3)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (5)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (44)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (90)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Biodiversity Heritage Library, United States (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (88)
- Brock University, Canada (4)
- CentAUR: Central Archive University of Reading - UK (82)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (24)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (44)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (1)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (11)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (8)
- National Center for Biotechnology Information - NCBI (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (156)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (76)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (66)
- Université de Montréal, Canada (13)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (5)
Resumo:
We propose a 3D-2D image registration method that relates image features of 2D projection images to the transformation parameters of the 3D image by nonlinear regression. The method is compared with a conventional registration method based on iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was performed, and the alignment quality was measured by the mean target registration error (mTRE). The regression approach was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach.