5 resultados para REDUCED FOLATE CARRIER
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Magma flow in dykes is still not well understood; some reported magnetic fabrics are contradictory and the potential effects of exsolution and metasomatism processes on the magnetic properties are issues open to debate. Therefore, a long dyke made of segments with different thickness, which record distinct degrees of metasomatism, the Messejana-Plasencia dyke (MPD), was studied. Oriented dolerite samples were collected along several cross-sections and characterized by means of microscopy and magnetic analyses. The results obtained show that the effects of metasomatism on rock mineralogy are important, and that the metasomatic processes can greatly influence anisotropy degree and mean susceptibility only when rocks are strongly affected by metasomatism. Petrography, scanning electron microscopy (SEM) and bulk magnetic analyses show a high-temperature oxidation-exsolution event, experienced by the very early Ti-spinels, during the early stages of magma cooling, which was mostly observed in central domains of the thick dyke segments. Exsolution reduced the grain size of the magnetic carrier (multidomain to single domain transformation), thus producing composite fabrics involving inverse fabrics. These are likely responsible for a significant number of the 'abnormal' fabrics, which make the interpretation of magma flow much more complex. By choosing to use only the 'normal' fabric for magma flow determination, we have reduced by 50 per cent the number of relevant sites. In these sites, the imbrication angle of the magnetic foliation relative to dyke wall strongly suggests flow with end-members indicating vertical-dominated flow (seven sites) and horizontal-dominated flow (three sites).
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
This paper presents the design methodology for the creation of corrugated horn antennas for the CosmoGal satellite. The mission will collect the radiation of the cosmic microwave background, by a radiometer in three different radio astronomy frequency bands (10.6-10.7GHz; 15.35-15.4GHz; 23.6-24GHz). It is discussed the design of several types of horns, simulated with the CST software. The best result points to a choked Gaussian corrugated horn antenna, with directivity of 23 dBi, side lobes 35 dB below and cross polarization better than -45 dB. Plus, with the advantage of having a small dimension, with a total length of only 7.43λ © 2014 IEEE.
Resumo:
Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The integrated numerical tool SWAMS (Simulation of Wave Action on Moored Ships) is used to simulate the behavior of a moored container carrier inside Sines’ Harbour. Wave, wind, currents, floating ship and moorings interaction is discussed. Several case scenarios are compared differing in the layout of the harbour and wind and wave conditions. The several harbour layouts correspond to proposed alternatives for the future expansion of Sines’ terminal XXI that include the extension of the East breakwater and of the quay. Additionally, the influence of wind on the behavior of the ship moored and the introduction of pre tensioning the mooring lines was analyzed. Hydrodynamic forces acting on the ship are determined using a modified version of the WAMIT model. This modified model utilizes the Haskind relations and the non-linear wave field inside the harbour obtained with finite element numerical model, BOUSS-WMH (Boussinesq Wave Model for Harbors) to get the wave forces on the ship. The time series of the moored ship motions and forces on moorings are obtained using BAS solver. © 2015 Taylor & Francis Group, London.