31 resultados para RATE DYNAMICS
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
The main purpose of this work was to study population dynamic discrete models in which the growth of the population is described by generalized von Bertalanffy's functions, with an adjustment or correction factor of polynomial type. The consideration of this correction factor is made with the aim to introduce the Allee effect. To the class of generalized von Bertalanffy's functions is identified and characterized subclasses of strong and weak Allee's functions and functions with no Allee effect. This classification is founded on the concepts of strong and weak Allee's effects to population growth rates associated. A complete description of the dynamic behavior is given, where we provide necessary conditions for the occurrence of unconditional and essential extinction types. The bifurcation structures of the parameter plane are analyzed regarding the evolution of the Allee limit with the aim to understand how the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is realized. To generalized von Bertalanffy's functions with strong and weak Allee effects is identified an Allee's effect region, to which is associated the concepts of chaotic semistability curve and Allee's bifurcation point. We verified that under some sufficient conditions, generalized von Bertalanffy's functions have a particular bifurcation structure: the big bang bifurcations of the so-called box-within-a-box type. To this family of maps, the Allee bifurcation points and the big bang bifurcation points are characterized by the symmetric of Allee's limit and by a null intrinsic growth rate. The present paper is also a significant contribution in the framework of the big bang bifurcation analysis for continuous 1D maps and unveil their relationship with the explosion birth and the extinction phenomena.
Resumo:
The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.
Resumo:
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K, C-0) and (K, sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K-c decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
Resumo:
Interest rate risk is one of the major financial risks faced by banks due to the very nature of the banking business. The most common approach in the literature has been to estimate the impact of interest rate risk on banks using a simple linear regression model. However, the relationship between interest rate changes and bank stock returns does not need to be exclusively linear. This article provides a comprehensive analysis of the interest rate exposure of the Spanish banking industry employing both parametric and non parametric estimation methods. Its main contribution is to use, for the first time in the context of banks’ interest rate risk, a nonparametric regression technique that avoids the assumption of a specific functional form. One the one hand, it is found that the Spanish banking sector exhibits a remarkable degree of interest rate exposure, although the impact of interest rate changes on bank stock returns has significantly declined following the introduction of the euro. Further, a pattern of positive exposure emerges during the post-euro period. On the other hand, the results corresponding to the nonparametric model support the expansion of the conventional linear model in an attempt to gain a greater insight into the actual degree of exposure.
Resumo:
This work focuses on the appraisal of public and environmental projects and, more specifically, on the calculation of the social discount rate (SDR) for this kind of very long-term investment projects. As a rule, we can state that the instantaneous discount rate must be equal to the hazard rate of the public good or to the mortality rate of the population that the project is intended to. The hazard can be due to technical failures of the system, but, in this paper, we are going to consider different independent variables that can cause the hazard. That is, we are going to consider a multivariate hazard rate. In our empirical application, the Spanish forest surface will be the system and the forest fire will be the fail that can be caused by several factors. The aim of this work is to integrate the different variables that produce the fail in the calculation of the SDR from a multivariate hazard rate approach.
Resumo:
Financial literature and financial industry use often zero coupon yield curves as input for testing hypotheses, pricing assets or managing risk. They assume this provided data as accurate. We analyse implications of the methodology and of the sample selection criteria used to estimate the zero coupon bond yield term structure on the resulting volatility of spot rates with different maturities. We obtain the volatility term structure using historical volatilities and Egarch volatilities. As input for these volatilities we consider our own spot rates estimation from GovPX bond data and three popular interest rates data sets: from the Federal Reserve Board, from the US Department of the Treasury (H15), and from Bloomberg. We find strong evidence that the resulting zero coupon bond yield volatility estimates as well as the correlation coefficients among spot and forward rates depend significantly on the data set. We observe relevant differences in economic terms when volatilities are used to price derivatives.
Resumo:
The relative contribution of European Union Allowances (EUAs) and Certified Emission Reductions (CERs) to the price discovery of their common true value has been empirically studied using daily data with inconclusive results. In this paper, we study the short-run and long-run price dynamics between EUAs and CERs future contracts using intraday data. We report a bidirectional feedback causality relationship both in the short-run and in the long-run, with the EUA's market being the leader.
Resumo:
Cork processing wastewater is an aqueous complex mixture of organic compounds that have been extracted from cork planks during the boiling process. These compounds, such as polysaccharides and polyphenols, have different biodegradability rates, which depend not only on the natureof the compound but also on the size of the compound. The aim of this study is to determine the biochemical oxygen demands (BOD) and biodegradationrate constants (k) for different cork wastewater fractions with different organic matter characteristics. These wastewater fractions were obtained using membrane separation processes, namely nanofiltration (NF) and ultrafiltration (UF). The nanofiltration and ultrafiltration membranes molecular weight cut-offs (MWCO) ranged from 0.125 to 91 kDa. The results obtained showed that the biodegradation rate constant for the cork processing wastewater was around 0.3 d(-1) and the k values for the permeates varied between 0.27-0.72 d(-1), being the lower values observed for permeates generated by the membranes with higher MWCO and the higher values observed for the permeates generated by the membranes with lower MWCO. These higher k values indicate that the biodegradable organic matter that is permeated by the membranes with tighter MWCO is more readily biodegradated.
Resumo:
Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO− present in TBCB, which is similar to the EEY/F-COO− element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE–TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
The purpose of this paper was to introduce the symbolic formalism based on kneading theory, which allows us to study the renormalization of non-autonomous periodic dynamical systems.
Resumo:
Frame rate upconversion (FRUC) is an important post-processing technique to enhance the visual quality of low frame rate video. A major, recent advance in this area is FRUC based on trilateral filtering which novelty mainly derives from the combination of an edge-based motion estimation block matching criterion with the trilateral filter. However, there is still room for improvement, notably towards reducing the size of the uncovered regions in the initial estimated frame, this means the estimated frame before trilateral filtering. In this context, proposed is an improved motion estimation block matching criterion where a combined luminance and edge error metric is weighted according to the motion vector components, notably to regularise the motion field. Experimental results confirm that significant improvements are achieved for the final interpolated frames, reaching PSNR gains up to 2.73 dB, on average, regarding recent alternative solutions, for video content with varied motion characteristics.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.