15 resultados para Quaternion algebra
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Thirty years ago, G.N. de Oliveira has proposed the following completion problems: Describe the possible characteristic polynomials of [C-ij], i,j is an element of {1, 2}, where C-1,C-1 and C-2,C-2 are square submatrices, when some of the blocks C-ij are fixed and the others vary. Several of these problems remain unsolved. This paper gives the solution, over the field of real numbers, of Oliveira's problem where the blocks C-1,C-1, C-2,C-2 are fixed and the others vary.
Resumo:
In this article we consider the monoid O(mxn) of all order-preserving full transformations on a chain with mn elements that preserve a uniformm-partition and its submonoids O(mxn)(+) and O(mxn)(-) of all extensive transformations and of all co-extensive transformations, respectively. We determine their ranks and construct a bilateral semidirect product decomposition of O(mxn) in terms of O(mxn)(-) and O(mxn)(+).
Resumo:
There exist striking analogies in the behaviour of eigenvalues of Hermitian compact operators, singular values of compact operators and invariant factors of homomorphisms of modules over principal ideal domains, namely diagonalization theorems, interlacing inequalities and Courant-Fischer type formulae. Carlson and Sa [D. Carlson and E.M. Sa, Generalized minimax and interlacing inequalities, Linear Multilinear Algebra 15 (1984) pp. 77-103.] introduced an abstract structure, the s-space, where they proved unified versions of these theorems in the finite-dimensional case. We show that this unification can be done using modular lattices with Goldie dimension, which have a natural structure of s-space in the finite-dimensional case, and extend the unification to the countable-dimensional case.
Resumo:
Este texto incide sobre o tema do pensamento algébrico nos primeiros anos de escolaridade ao nível da formação contínua de professores. Na abordagem apresentada o tema dos padrões surge como contexto estruturante para o desenvolvimento do pensamento algébrico. Começa-se por fazer um enquadramento dos referenciais teóricos que fundamentam a adoção de uma proposta didática desenvolvida nesse âmbito, recorrendo em seguida a um estudo empírico que foi desenvolvido, do qual se relata aqui uma parte centrada nas práticas de sala de aula de uma professora do primeiro ciclo em formação, de modo a poder confirmar a eficácia da proposta no ensino e desenvolvimento do pensamento algébrico dos alunos. Os resultados permitem concluir que a professora interiorizou e projetou na sua prática os aspetos essenciais que conduziram ao desenvolvimento do pensamento algébrico nos alunos. O texto termina com algumas conclusões e implicações para a formação de professores.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
The rank of a semigroup, an important and relevant concept in Semigroup Theory, is the cardinality of a least-size generating set. Semigroups of transformations that preserve or reverse the order or the orientation as well as semigroups of transformations preserving an equivalence relation have been widely studied over the past decades by many authors. The purpose of this article is to compute the ranks of the monoid
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.
Resumo:
In recent papers, formulas are obtained for directional derivatives, of all orders, of the determinant, the permanent, the m-th compound map and the m-th induced power map. This paper generalizes these results for immanants and for other symmetric powers of a matrix.
Resumo:
In this paper, the exact value for the norm of directional derivatives, of all orders, for symmetric tensor powers of operators on finite dimensional vector spaces is presented. Using this result, an upper bound for the norm of all directional derivatives of immanants is obtained.
Resumo:
Balanced nesting is the most usual form of nesting and originates, when used singly or with crossing of such sub-models, orthogonal models. In balanced nesting we are forced to divide repeatedly the plots and we have few degrees of freedom for the first levels. If we apply stair nesting we will have plots all of the same size rendering the designs easier to apply. The stair nested designs are a valid alternative for the balanced nested designs because we can work with fewer observations, the amount of information for the different factors is more evenly distributed and we obtain good results. The inference for models with balanced nesting is already well studied. For models with stair nesting it is easy to carry out inference because it is very similar to that for balanced nesting. Furthermore stair nested designs being unbalanced have an orthogonal structure. Other alternative to the balanced nesting is the staggered nesting that is the most popular unbalanced nested design which also has the advantage of requiring fewer observations. However staggered nested designs are not orthogonal, unlike the stair nested designs. In this work we start with the algebraic structure of the balanced, the stair and the staggered nested designs and we finish with the structure of the cross between balanced and stair nested designs.
Resumo:
We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.
Resumo:
In recent papers, the authors obtained formulas for directional derivatives of all orders, of the immanant and of the m-th xi-symmetric tensor power of an operator and a matrix, when xi is a character of the full symmetric group. The operator norm of these derivatives was also calculated. In this paper, similar results are established for generalized matrix functions and for every symmetric tensor power.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).
Resumo:
Let and be matrices over an algebraically closed field. Let be elements of such that and . We give necessary and sufficient condition for the existence of matrices and similar to and, respectively, such that has eigenvalues.