14 resultados para Pt-based nanoparticles

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The catalytic properties of Pt based cordierite foam catalysts have been evaluated in catalytic combustion of toluene (800 ppm in air). The catalysts contain identical Pt content (0.1%) which was introduced by three different ways: Pt ion exchange on MFI zeolite and then coating on the foam; Pt ion exchange after zeolite coating and finally Pt directly wet impregnated on the cordierite foam. The catalytic behaviour of Pt foam based catalysts was compared with that of PtMFI zeolite under powder form. Pt exchanged MFI supported on the cordierite foams present an improvement of activity for toluene combustion of about 50 degrees C on the light off temperature (T-50%). The enhanced performance of the structured catalysts is due not only to the open structure of foams and homogeneous thin layers catalyst deposited on their cell walls, but also to the fact that the size and location of Pt particles present in MFI zeolite are changed during the dipping step. Indeed, as prepared Pt samples and those used in the preparation of the slurry were observed by transmission electron microscopy revealing that the chemical interaction of PtMFI zeolite with the binder and detergent, both present in the slurry, leads to an increase of Pt particles size which were found to migrate from internal pores to the external surface of zeolite crystallites thereby increasing catalytic activity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of ferromagnetism well above room temperature in the Co-doped TiO2 system, diluted magnetic semiconductors based on TiO2 doped with transition metals have generated great interest because of their potential use in the development of spintronic devices. The purpose of this paper is to report on a new and swift chemical route to synthesise highly stable anatase single-phase Co- and Fe-doped TiO2 nanoparticles, with dopant concentrations of up to 10 at.-% and grain sizes that range between 20 and 30 nm. Complementary structural, microstructural and chemical analyses of the different nanopowders synthesised strongly support the hypothesis that a homogeneous distribution of the dopant element in the substitutional sites of the anatase structure has been achieved. Moreover, UV/Vis diffuse reflectance spectra of powder samples show redshifts to lower energies and decreasing bandgap energies with increasing Co or Fe concentration, which is consistent with n-type doping of the TiO2 anatase matrix. Films of Co-doped TiO2 were successfully deposited onto Si (100) substrates by the dip-coating method, with suspensions of Ti1-xCOxO2 nanoparticles in ethylene glycol. ((C)Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy (RT) is one of the most important approaches in the treatment of cancer and its performance can be improved in three different ways: through the optimization of the dose distribution, by the use of different irradiation techniques or through the study of radiobiological initiatives. The first is purely physical because is related to the physical dose distributiuon. The others are purely radiobiological because they increase the differential effect between the tumour and the health tissues. The Treatment Planning Systems (TPS) are used in RT to create dose distributions with the purpose to maximize the tumoral control and minimize the complications in the healthy tissues. The inverse planning uses dose optimization techniques that satisfy the criteria specified by the user, regarding the target and the organs at risk (OAR’s). The dose optimization is possible through the analysis of dose-volume histograms (DVH) and with the use of computed tomography, magnetic resonance and other digital image techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scope of study: welding operations result in harmful emissions of nanoparticles; the aim of emissions monitorisation is to evaluate exposure levels and to derive protection measures in order to protect exposed workers; however, the traditional approach of comparing measured concentrations with exposure limits cannot be used; but risk levels can be quantified by using Control Banding Strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports a theoretical study aimed to identify the plasmonic resonance condition for a system formed by metallic nanoparticles embedded in an a-Si: H matrix. The study is based on a Tauc-Lorentz model for the electrical permittivity of a-Si: H and a Drude model for the metallic nanoparticles. It is calculated the The polarizability of an sphere and ellipsoidal shaped metal nanoparticles with radius of 20 nm. We also performed FDTD simulations of light propagation inside this structure reporting a comparison among the effects caused by a single nanoparticles of Aluminium, Silver and, as a comparison, an ideally perfectly conductor. The simulation results shows that is possible to obtain a plasmonic resonance in the red part of the spectrum (600-700 nm) when 20-30 nm radius Aluminium ellipsoids are embedded into a-Si: H.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results, obtained by means of an analytic study and a numerical simulation, about the resonant condition necessary to produce a Localized Surface Plasmonic Resonance (LSPR) effect at the surface of metal nanospheres embedded in an amorphous silicon matrix. The study is based on a Lorentz dispersive model for a-Si:H permittivity and a Drude model for the metals. Considering the absorption spectra of a-Si:H, the best choice for the metal nanoparticles appears to be aluminium, indium or magnesium. No difference has been observed when considering a-SiC:H. Finite-difference time-domain (FDTD) simulation of an Al nanosphere embedded into an amorphous silicon matrix shows an increased scattering radius and the presence of LSPR induced by the metal/semiconductor interaction under green light (560 nm) illumination. Further results include the effect of the nanoparticles shape (nano-ellipsoids) in controlling the wavelength suitable to produce LSPR. It has been shown that is possible to produce LSPR in the red part of the visible spectrum (the most critical for a-Si:H solar cells applications in terms of light absorption enhancement) with aluminium nano-ellipsoids. As an additional results we may conclude that the double Lorentz-Lorenz model for the optical functions of a-Si:H is numerically stable in 3D simulations and can be used safely in the FDTD algorithm. A further simulation study is directed to determine an optimal spatial distribution of Al nanoparticles, with variable shapes, capable to enhance light absorption in the red part of the visible spectrum, exploiting light trapping and plasmonic effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing data of high spectral resolution of the Earth. This data can be used in remote sensing applications, such as, target detection, hazard prevention, and monitoring oil spills, among others. In most of these applications, one of the requirements of paramount importance is the ability to give real-time or near real-time response. Recently, onboard processing systems have emerged, in order to overcome the huge amount of data to transfer from the satellite to the ground station, and thus, avoiding delays between hyperspectral image acquisition and its interpretation. For this purpose, compact reconfigurable hardware modules, such as field programmable gate arrays (FPGAs) are widely used. This paper proposes a parallel FPGA-based architecture for endmember’s signature extraction. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data sets collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems, opening new perspectives for onboard hyperspectral image processing.