1 resultado para Project 2005-2003-B : Learning System for Life Prediction of Infrastructure
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (37)
- Aston University Research Archive (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (60)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- Cámara de Comercio de Bogotá, Colombia (9)
- CentAUR: Central Archive University of Reading - UK (53)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (10)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (16)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (25)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (20)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (17)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (15)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (13)
- National Center for Biotechnology Information - NCBI (24)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (82)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (66)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (13)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (45)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (16)
- University of Queensland eSpace - Australia (45)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
This paper is an elaboration of the DECA algorithm [1] to blindly unmix hyperspectral data. The underlying mixing model is linear, meaning that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. The proposed method, as DECA, is tailored to highly mixed mixtures in which the geometric based approaches fail to identify the simplex of minimum volume enclosing the observed spectral vectors. We resort then to a statitistical framework, where the abundance fractions are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. With respect to DECA, we introduce two improvements: 1) the number of Dirichlet modes are inferred based on the minimum description length (MDL) principle; 2) The generalized expectation maximization (GEM) algorithm we adopt to infer the model parameters is improved by using alternating minimization and augmented Lagrangian methods to compute the mixing matrix. The effectiveness of the proposed algorithm is illustrated with simulated and read data.