3 resultados para Proctor compaction

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unstabilized rammed earth is a recyclable, economical, and eco-friendly building material, used in the past and still applied today. Traditionally, its use was based on a long empirical knowledge of the local materials. Because this knowledge was mostly lost or is no longer sufficient, in many countries normative documents have been produced to allow the assessment of rammed earth soils. With the aim of contributing for a refining of these normative requirements, this article presents a research work that included: (i) collection of Unstabilized rammed earth samples from six constructions in Portugal; (ii) a literature survey of normative and complementary documents to identify the most mentioned key-properties, the test procedures and the corresponding threshold limits; and (iii) a discussion of the test procedures and of the thresholds limits in the light of the experimental results. The analyzed properties are the particle size distribution, maximum particle size, plasticity, compaction, linear shrinkage, organic content, and salt content. The work highlights the advantages of taking into account the characteristics of existing constructions as a basis for the establishment and further refining of consistent threshold values. In particular, it shows that it is essential to adjust the requirements to the specificities of local materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.