7 resultados para Processing technique of resin transfer molding (RTM)
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
Frame rate upconversion (FRUC) is an important post-processing technique to enhance the visual quality of low frame rate video. A major, recent advance in this area is FRUC based on trilateral filtering which novelty mainly derives from the combination of an edge-based motion estimation block matching criterion with the trilateral filter. However, there is still room for improvement, notably towards reducing the size of the uncovered regions in the initial estimated frame, this means the estimated frame before trilateral filtering. In this context, proposed is an improved motion estimation block matching criterion where a combined luminance and edge error metric is weighted according to the motion vector components, notably to regularise the motion field. Experimental results confirm that significant improvements are achieved for the final interpolated frames, reaching PSNR gains up to 2.73 dB, on average, regarding recent alternative solutions, for video content with varied motion characteristics.
Resumo:
Introdução – A cintigrafia de perfusão do miocárdio (CPM) desempenha um importante papel no diagnóstico, avaliação e seguimento de pacientes com doença arterial coronária, sendo o seu processamento realizado maioritariamente de forma semiautomática. Uma vez que o desempenho dos técnicos de medicina nuclear (TMN) pode ser afetado por fatores individuais e ambientais, diferentes profissionais que processem os mesmos dados poderão obter diferentes estimativas dos parâmetros quantitativos (PQ). Objetivo – Avaliar a influência da experiência profissional e da função visual no processamento semiautomático da CPM. Analisar a variabilidade intra e interoperador na determinação dos PQ funcionais e de perfusão. Metodologia – Selecionou-se uma amostra de 20 TMN divididos em dois grupos, de acordo com a sua experiência no software Quantitative Gated SPECTTM: Grupo A (GA) – TMN ≥600h de experiência e Grupo B (GB) – TMN sem experiência. Submeteram-se os TMN a uma avaliação ortóptica e ao processamento de 21 CPM, cinco vezes, não consecutivas. Considerou-se uma visão alterada quando pelo menos um parâmetro da função visual se encontrava anormal. Para avaliar a repetibilidade e a reprodutibilidade recorreu-se à determinação dos coeficientes de variação, %. Na comparação dos PQ entre operadores, e para a análise do desempenho entre o GA e GB, aplicou-se o Teste de Friedman e de Wilcoxon, respetivamente, considerando o processamento das mesmas CPM. Para a comparação de TMN com visão normal e alterada na determinação dos PQ utilizou-se o Teste Mann-Whitney e para avaliar a influência da visão para cada PQ recorreu-se ao coeficiente de associação ETA. Diferenças estatisticamente significativas foram assumidas ao nível de significância de 5%. Resultados e Discussão – Verificou-se uma reduzida variabilidade intra (<6,59%) e inter (<5,07%) operador. O GB demonstrou ser o mais discrepante na determinação dos PQ, sendo a parede septal (PS) o único PQ que apresentou diferenças estatisticamente significativas (zw=-2,051, p=0,040), em detrimento do GA. No que se refere à influência da função visual foram detetadas diferenças estatisticamente significativas apenas na fração de ejeção do ventrículo esquerdo (FEVE) (U=11,5, p=0,012) entre TMN com visão normal e alterada, contribuindo a visão em 33,99% para a sua variação. Denotaram-se mais diferenças nos PQ obtidos em TMN que apresentam uma maior incidência de sintomatologia ocular e uma visão binocular diminuída. A FEVE demonstrou ser o parâmetro mais consistente entre operadores (1,86%). Conclusão – A CPM apresenta-se como uma técnica repetível e reprodutível, independente do operador. Verificou-se influência da experiência profissional e da função visual no processamento semiautomático da CPM, nos PQ PS e FEVE, respetivamente.