5 resultados para Probability Weight
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de especialização: Ultrassonografia Cardiovascular.
Resumo:
Objective: To assess different factors influencing adiponectinemia in obese and normal-weight women; to identify factors associated with the variation (Δ) in adiponectinemia in obese women following a 6-month weight loss program, according to surgical/non-surgical interventions. Methods: We studied 100 normal-weight women and 112 obese premenopausal women; none of them was on any medical treatment. Women were characterized for anthropometrics, daily macronutrient intake, smoking status, contraceptives use, adiponectin as well as IL-6 and TNF-α serum concentrations. Results: Adiponectinemia was lower in obese women (p < 0.001), revealing an inverse association with waist-to-hip ratio (p < 0.001; r = –0.335). Normal-weight women presented lower adiponectinemia among smokers (p = 0.041); body fat, waist-to-hip ratio, TNF-α levels, carbohydrate intake, and smoking all influence adiponectinemia (r 2 = 0.436). After weight loss interventions, a significant modification in macronutrient intake occurs followed by anthropometrics decrease (chiefly after bariatric procedures) and adiponectinemia increase (similar after surgical and non-surgical interventions). After bariatric intervention, Δ adiponectinemia was inversely correlated to Δ waist circumference and Δ carbohydrate intake (r 2 = 0.706). Conclusion: Anthropometrics, diet, smoking, and TNF-α levels all influence adiponectinemia in normal-weight women, although explaining less than 50% of it. In obese women, anthropometrics modestly explain adiponectinemia. Opposite to non-surgical interventions, after bariatric surgery adiponectinemia increase is largely explained by diet composition and anthropometric changes.
Resumo:
Objective - To evaluate the effect of prepregnancy body mass index (BMI), energy and macronutrient intakes during pregnancy, and gestational weight gain (GWG) on the body composition of full-term appropriate-for-gestational age neonates. Study Design - This is a cross-sectional study of a systematically recruited convenience sample of mother-infant pairs. Food intake during pregnancy was assessed by food frequency questionnaire and its nutritional value by the Food Processor Plus (ESHA Research Inc, Salem, OR). Neonatal body composition was assessed both by anthropometry and air displacement plethysmography. Explanatory models for neonatal body composition were tested by multiple linear regression analysis. Results - A total of 100 mother-infant pairs were included. Prepregnancy overweight was positively associated with offspring weight, weight/length, BMI, and fat-free mass in the whole sample; in males, it was also positively associated with midarm circumference, ponderal index, and fat mass. Higher energy intake from carbohydrate was positively associated with midarm circumference and weight/length in the whole sample. Higher GWG was positively associated with weight, length, and midarm circumference in females. Conclusion - Positive adjusted associations were found between both prepregnancy BMI and energy intake from carbohydrate and offspring body size in the whole sample. Positive adjusted associations were also found between prepregnancy overweight and adiposity in males, and between GWG and body size in females.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.