24 resultados para Pressure Cycling Technology
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Over the centuries there has been a growing trend of societies and it is possible to verify their economic growth. This growth has provided an increased pressure on natural resources, often over-reaching the boundaries of each country, which has called into question the level of environmental sustainability in different countries. Sustainability is understood as a complex concept involving ecological, social, economic dimensions and temporal urban processes. Therefore, Firmino (2009) suggests that the ecological footprint (EF) allows people to establish dependency relations between human activities and the natural resources required for such activities and for the absorption of waste generated. According to Bergh & Verbruggen (1999) the EF is an objective, impartial and one-dimensional indicator that enables people to assess the sustainability. The Superior Schools have a crucial role in building the vision of a sustainable future as a reality, because in transmitting values and environmental principles to his students, are providing that they, in exercising his professional activity, make decisions weighing the environmental values. This ensures improved quality of life. The present study aims to determine the level of environmental sustainability of the Academic Community of Lisbon College of Health Technology (ESTeSL), by calculating the EF, and describe whether a relation between Footprint and various socio-demographic characteristics of the subjects.
Resumo:
This paper studies the effect of ship speed and water depth on the propagation of ship generated waves. The ship is represented by a moving pressure distribution function at the free surface that is able to reproduce most of the phenomena involved in wave propagation. Results are obtained for a ship sailing along a coastal stretch made of a sloping bottom and a constant depth region. The results show that in the sloping bottom the crests of waves are bent along the slope and in the constant depth the standard Kelvin wave patterns can be found for the subcritical regime. In the critical regime the wave system is characterized by significant diverging waves and for a supercritical regime, the transverse waves disappear. © 2015 Taylor & Francis Group, London.
Resumo:
Demand for power is growing every day, mainly due to emerging economies in countries such as China, Russia, India, and Brazil. During the last 50 years steam pressure and temperature in power plants have been continuously raised to improve thermal efficiency. Recent efforts to improve efficiency leads to the development of a new generation of heat recovery steam generator, where the Benson once-through technology is applied to improve the thermal efficiency. The main purpose of this paper is to analyze the mechanical behavior of a high pressure superheater manifold by applying finite element modeling and a finite element analysis with the objective of analyzing stress propagation, leading to the study of damage mechanism, e.g., uniaxial fatigue, uniaxial creep for life prediction. The objective of this paper is also to analyze the mechanical properties of the new high temperature resistant materials in the market such as 2Cr Bainitic steels (T/P23 and T/P24) and also the 9-12Cr Martensitic steels (T/P91, T/P92, E911, and P/T122). For this study the design rules for construction of power boilers to define the geometry of the HPSH manifold were applied.
Resumo:
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)(6) as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm(-2) and a partial pressure ratio of O-2 to Cr(CO)(6) of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s(-1) and mean particle sizes of 1.85 mu m were measured for these films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work addresses the treatment by nanofiltration (NF) of solutions containing NaCN and NH(4)Cl at various pH values. The NF experiments are carried out in a Lab-Unit equipped with NF-270 membranes for model solutions that are surrogates of industrial ammoniacal wastewaters generated in the coke-making processes. The applied pressure is 30 bar. The main objective is the separation of the compounds NaCN and NH(4)Cl and the optimization of this separation as a function of the pH. Membrane performance is highly dependent on solution composition and characteristics, namely on the pH. In fact, the rejection coefficients for the binary model solution containing sodium cyanide are always higher than the rejections coefficients for the ammonium chloride model solution. For ternary solutions (cyanide/ammonium/water) it was observed that for pH values lower than 9 the rejection coefficients to ammonium are well above the ones observed for the cyanides, but for pH values higher than 9.5 there is a drastic decrease in the ammonium rejection coefficients with the increase of the pH. These results take into account the changes that occur in solution, namely, the solute species that are predominant, with the increase of the pH. The fluxes of the model solutions decreased with increased pH. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 degrees C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films' phase composition, increasing with the increase of the Urbach energy for increasing rutile content. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mestrado em Gestão e Avaliação de Tecnologias em Saúde
Resumo:
Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.
Resumo:
Higher education institutions, has an active role in the development of a sustainable future and for this reason, it is essential that they became environmentally sustainable institutions, applying methods such as the Ecological Footprint analysis. This study intent is to strengthen the potential of the ecological footprint as an indicator of the sustainability of students of Lisbon School of Health Technology, and identify the relationship between the ecological footprint and the different socio-demographic variables.
Resumo:
According to the Intergovernmental Panel on Climate Change, the average temperature of the Earth's surface has risen about 1º C in the last 100 years and will increase, depending on the scenario emissions of Greenhouse Gases. The rising temperatures could trigger environmental effects like rising sea levels, floods, droughts, heat waves, hurricanes. With growing concerns about different environmental issues and the need to address climate change, institutions of higher education should create knowledge and integrate sustainability into teaching programs and research programs, as well as promoting environmental issues for society. The aim of this study is to determine the carbon footprint of the academic community of Lisbon School of Health Technology (ESTeSL) in 2013, identifying possible links between the Carbon Footprint and the different socio-demographic variables.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.
Resumo:
In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si: H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions.
Resumo:
This paper discusses the technology of smart floors as a enabler of smart cities. The discussion will be based on technology that is embedded into the environment that enable location, navigation but also wireless power transmission for powering up elements siting on it, typically mobile devices. One of those examples is the smart floor, this implementation follows two paths, one where the floor is passive, and normally passive RFID's are embedded into the floor, they are used to provide intelligence into the surrounding space, this is normally complemented with a battery powered mobile unit that scans the floor for the sensors and communicates the information to a database which locates the mobile device in the environment. The other path for the smart city enabler is where the floor is active and delivers energy for the objects standing on top of it. In this paper these two approaches will be presented, by discussing the technology behind it. © 2014 IEEE.