3 resultados para Premedication, sufentanil intranasal
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only currently available vaccine against tuberculosis. It is highly effective in pre-exposure immunisation against TB in children when administered by subcutaneous route to newborns. However, it does not provide permanent protection in adults. In this work, polymeric chitosan-alginate microparticles have been evaluated as potential nasal delivery systems and mucosal adjuvants for live attenuated BCG. Chitosan (CS) has been employed as adjuvant and mucosal permeation-enhancer, and, together with alginate (ALG), as additive to enhance BCG-loaded microparticles (MPs) cellular uptake in a human monocyte cell line, by particle surface modification. The most suitable particles were used for vaccine formulation and evaluation of immune response following intranasal immunisation of BALB/c mice.
Resumo:
Immunisation against M. tuberculosis with current available BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis. Targeting nasal mucosa is an attractive option for a more effective immunization. The delivery of BCG via the intranasal route involves overcoming barriers such as crossing the physical barrier imposed by the mucus layer and ciliar remotion, cellular uptake and intracellular trafficking by antigen presenting cells. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as vaccine carrier and adjuvant, improving the elicited immune response. In this study, different combinations of Chitosan/Alginate/TPP microparticles with BCG were produced as vaccine systems. The developed microparticle system successfully modulates BCG surface physicochemical properties and promotes effective intracellular uptake by human macrophage cell lines Preliminary immune responses were evaluated after s.c. and intranasal immunisation of BALB/c mice. BCG vaccination successfully stimulated the segregation of IgG2a and IgG1, where intranasal immunisation with chitosan/alginate particulate system efficiently elicited a more equilibrated cellular/humoral immune response.
Resumo:
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.