7 resultados para Pozzolan and rice husk ash
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia mecânica
Resumo:
This article describes an experimental study on ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace. The main objective of this study was to relate the ash deposit rates with the type of biomass burned and its thermal percentage in the blend. The thermal percentage of biomass in the blend was varied between 10% and 50% for both sawdust and olive stones. For comparison purposes, tests have also been performed using only coal or only biomass. During the tests, deposits were collected with the aid of an air-cooled deposition probe placed far from the flame region, where the mean gas temperature was around 640 degrees C. A number of deposit samples were subsequently analyzed on a scanning electron microscope equipped with an energy dispersive X-ray detector. Results indicate that blending sawdust with coal decreases the deposition rate as compared with the firing of unblended coal due to both the sawdust low ash content and its low alkalis content. The co-firing of coal and sawdust yields deposits with high levels of silicon and aluminium which indicates the presence of ashes with high fusion temperature and, thus, with less capacity to adhere to the surfaces. In contrast, in the co-firing of coal with olive stones the deposition rate increases as compared with the firing of unblended coal and the deposits produced present high levels of potassium, which tend to increase their stickiness.
Resumo:
Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SCC mixes were produced: 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% fad, respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. © 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the results of a study on the behaviour of self-compacting concrete (SCC) in the fresh and hardened states, produced with binary and ternary mixes of fly ash (FA) and limestone filler (LF), using the method proposed by Nepomuceno. His method determines the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) easily and efficiently, whilst guaranteeing the SCC properties in both the fresh and hardened states. For this, 11 SCMs were studied: one with cement (C) only; three with FA at 30%, 60% and 70% C substitution; three with LF at 30%, 60% and 70% C substitution; four with FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% C substitution. Once the composition of these mortars was defined, 18 SCC mixes were produced: 14 binary SCC mixes were produced with the seven binary mortar mixes, and four ternary SCC mixes were produced with the four ternary mortar mixes. In addition to the methodology proposed by Nepomuceno, the combined use of FA and LF in ternary mixtures was tested. The results confirmed that the method could yield SCC with adequate properties in both the fresh and hardened states. It was also possible to determine the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) that will guarantee the SCC properties in both the fresh and hardened states, as confirmed through the optimized behaviour of the SCC in the fresh state and the promising results in the hardened state (compressive strength). The potential demonstrated by the joint use of LF and FA through the synergetic interaction of both additions is emphasized.
Resumo:
The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete’s microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC’s microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC’s durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA. © 2015 RILEM.