5 resultados para Post-chemotherapy cell lines
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A new family of "RuCp" (Cp=eta(5)-C5H5) derivatives with bidentate N,O and N,N'-heteroaromatic ligands revealed outstanding cytotoxic properties against several human cell lines namely, A2780, A2780CisR, HT29, MCF7, MDAMB231, and PD. IC50 values were much lower than those found for cisplatin. Crystal structure of compound 4 was determined by X-ray diffraction studies. Density functional theory (DFT) calculations performed for compound 1 showed electronic flow from the ruthenium center to the coordinated bidentate ligand, in agreement with the electrochemical studies and the existence of a metal-to-ligand charge-transfer (MLCT) band evidenced by spectroscopic data.
Resumo:
The organotin(IV) compounds [Me2Sn(L)(2)] (1), [Et(2)sn(L)(2)] (2), [(Bu2Sn)-Bu-n(L)(2)] (3), [(n)Oct(2)Sn(L)(2)] (4), [Ph2Sn(L)(2)] (5), and [PhOSnL](6) (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1-5 are mononuclear diorganotin (IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn6O6 core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60, BGC-823, Bel-7402, and KB human cancer cell lines. Within the mononuclear compounds, the most active ones (3, 5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn-O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.
Resumo:
The compounds [mPTA][CoCl4] (1, mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [CoCl(H2O)(DION)(2)][BF4] (2, DION = 1,10-phenanthroline-5,6-dione), [Zn(DION)(2)]Cl-2 (3) and [ZnCl(O-PTA=O)(DION)][BF4] (4) were synthesized by reaction of CoCl2 with [mPTA]I or DION and ZnCl2 with DION or 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O) and DION, respectively. All complexes are water soluble and have been characterized by IR, far-IR, H-1, C-13 and P-31{H-1} NMR spectroscopy, ESI-MS, elemental analyses and single-crystal X-ray diffraction structural analysis (for 1). They were screened against the human tumour cell lines HCT116, HepG2 and MCF7. Complexes 2 and 3 exhibit the highest in vitro cytotoxicity and show lower cytotoxic activities in normal human fibroblast cell line than in HCT116 tumour cell line, which demonstrates their slight specificity for this type of tumour cell.
Resumo:
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.
Resumo:
Helicobacter pylori infection represents a serious health problem, given its association with serious gastric diseases as gastric ulcers, cancer and MALT lymphoma. Currently no vaccine exists and antibiotic-based eradication therapy is already failing in more than 20% of cases. To increase the knowledge on the infection process diverse gastric cell lines, e.g. the adenocarcinona gastric (AGS) cell line, are routinely used has in vitro models of gastric epithelia. In the present work the molecular fingerprint of infected and non-infected AGS cell lines, by diverse H. pylori strains, was acquired using vibrational infrared spectroscopy. These molecular fingerprints enabled to discriminate infected from non-infected AGS cells, and infection due to different strains, by performing Principal Component Analysis. It was also possible to estimate, from the AGS cells molecular fingerprint, the effect of the infection on diverse biochemical and metabolic cellular status. In resume infra-red spectroscopy enabled the acquisition of infected AGS cells molecular fingerprint with minimal sample preparation, in a rapid, high-throughput, economic process yielding highly sensitive and informative data, most useful for promoting critical knowledge on the H. pylori infection process. © 2015 IEEE.