4 resultados para Portland Harbor
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Marble processing activities generates a.significant amount of waste in dust form. This waste, which is nowadays one of the environmental problems worldwide, presents great potential of being used as mineral addition in blended cements production. This paper shows preliminary results of an ongoing project which ultimate goal is to investigate the viability of using waste marble dust (WMD), produced by marble Portuguese industry, as cement replacement material. In order to evaluate the effects of the WMD on mechanical behaviour, different mortar blended cement mixtures were tested. These mixtures were prepared with different partial substitution level of cement with WMD. Strength results of WMD blended cements were compared to control cements with same level of incorporation of natural limestone used to produce commercial Portland-limestone cements. The results obtained show that WMD blended cements perform better than limestone blended cements for same replacement level up to 20% w/w. Therefore, WMD reveals promising attributes for blended cements production.
Resumo:
Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the "Microareias 2012" workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.
Resumo:
Sand serves as a reservoir for potentially pathogenic microorganisms. Children, a high-risk group, can acquire infections from sand in sandboxes, recreational areas, and beaches. This paper reviews the microbes in sands, with an emphasis on fungi. Recreational areas and beach sands have been found to harbor many types of fungi and microbes. A newly emerging group of fungi of concern include the black yeast-like fungi. After establishing that sand is a reservoir for fungi, clinical manifestations of fungal infections are described with an emphasis on ocular and ear infections. Overall, we recommend environmental studies to develop monitoring strategies for sand and studies to evaluate the link between fungi exposure in sand and human health impacts.
Resumo:
Hydraulic binders play a vital role in the economic and social development because they are essential components of concrete, the most widely used construction material. Nowadays, Portland cement is the most predominantly used hydraulic binder due to its properties and widespread availability. Cement manufacture consumes large amount of non-renewable raw materials and energy, and it is a carbon-intensive process. Many efforts are, therefore, being undertaken towards the developing “greener” hydraulic binders. Concomitantly, binders must also correspond to market demand in terms of performance and aesthetic as well as fulfill mandatory regulations. In order to pursue these goals, different approaches have been followed including the improvement of the cement manufacturing process, production of blended cements, and testing innovative hydraulic binders with a different chemistry. This chapter presents a brief history of hydraulic binder’s discovery and use as well as the environmental and economic context of cement industry. It, then, describes the chemistry and properties of currently most used hydraulic binders—common cements and hydraulic limes—and that of the more promising binders for future applications, namely special Portland cements, aluminous cements, calcium sulfoaluminate cements, and alkali-activated cements.