2 resultados para Phenotypic Maturation

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract - Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal findings: We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance: Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six open reading frames (ORFs) located on chromosome VII of Saccharomyces cerevisiae (YGR205w, YGR210c, YGR211w, YGR241c, YGR243w and YGR244c) were disrupted in two different genetic backgrounds using short-flanking homology (SFH) gene replacement. Sporulation and tetrad analysis showed that YGR211w, recently identified as the yeast ZPR1 gene, is an essential gene. The other five genes are non-essential, and no phenotypes could be associated to their inactivation. Two of these genes have recently been further characterized: YGR241c (YAP1802) encodes a yeast adaptor protein and YGR244c (LSC2) encodes the b-subunit of the succinyl-CoA ligase. For each ORF, a replacement cassette with long flanking regions homologous to the target locus was cloned in pUG7, and the cognate wild-type gene was cloned in pRS416.