18 resultados para Performance of algae
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This study aimed to determine and evaluate the diagnostic accuracy of visual screening tests for detecting vision loss in elderly. This study is defined as study of diagnostic performance. The diagnostic accuracy of 5 visual tests -near convergence point, near accommodation point, stereopsis, contrast sensibility and amsler grid—was evaluated by means of the ROC method (receiver operating characteristics curves), sensitivity, specificity, positive and negative likelihood ratios (LR+/LR−). Visual acuity was used as the reference standard. A sample of 44 elderly aged 76.7 years (±9.32), who were institutionalized, was collected. The curves of contrast sensitivity and stereopsis are the most accurate (area under the curves were 0.814−p = 0.001, C.I.95%[0.653;0.975]— and 0.713−p = 0.027, C.I.95%[0,540;0,887], respectively). The scores with the best diagnostic validity for the stereopsis test were 0.605 (sensitivity 0.87, specificity 0.54; LR+ 1.89, LR−0.24) and 0.610 (sensitivity 0.81, specificity 0.54; LR+1.75, LR−0.36). The scores with higher diagnostic validity for the contrast sensibility test were 0.530 (sensitivity 0.94, specificity 0.69; LR+ 3.04, LR−0.09). The contrast sensitivity and stereopsis test's proved to be clinically useful in detecting vision loss in the elderly.
Resumo:
The aging of Portuguese population is characterized by an increase of individuals aged older than 65 years. Preventable visual loss in older persons is an important public health problem. Tests used for vision screening should have a high degree of diagnostic validity confirmed by means of clinical trials. The primary aim of a screening program is the early detection of visual diseases. Between 20% and 50% of older people in the UK have undetected reduced vision and in most cases is correctable. Elderly patients do not receive a systematic eye examination unless a problem arises with their glasses or suspicion vision loss. This study aimed to determine and evaluate the diagnostic accuracy of visual screening tests for detecting vision loss in elderly. Furthermore, it pretends to define the ability to find the subjects affected with vision loss as positive and the subjects not affected with the same disease as negative. The ideal vision screening method should have high sensitivity and specificity for early detection of risk factors. It should be also low cost and easy to implement in all geographic and socioeconomic regions. Sensitivity is the ability of an examination to identify the presence of a given disease and specificity is the ability of the examination to identify the absence of a given disease. It was not an aim of this study to detect abnormalities that affect visual acuity. The aim of this study was to find out what´s the best test for the identification of any vision loss.
Resumo:
Fine recycled aggregates are seen as the last choice in recycling for concrete production. Many references quote their detrimental influence on the most important characteristics of concrete: compressive and tensile strength; modulus of elasticity; water absorption; shrinkage: carbonation and chloride penetration. These two last characteristics are fundamental in terms of the long-term durability of reinforced or prestressed concrete. In the experimental research carried out at IST, part of which has already been published, different concrete mixes (with increasing rates of substitution of fine natural aggregates sand - with fine recycled aggregates from crushed concrete) were prepared and tested. The results were then compared with those for a reference concrete with exactly the same composition and grading curve, but with no recycled aggregates. This paper presents the main results of this research for water absorption by immersion and capillarity, chloride penetration (by means of the chloride migration coefficient), and carbonation resistance, drawing some conclusions on the feasibility of using this type of aggregate in structural concrete, while taking into account any ensuing obvious positive environmental impact.
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Research on the use of Construction and Demolition Waste (CDW) as recycled aggregate (in particular crushed concrete) for the production of new concrete has by now established the feasibility of this environmentally-friendly use of otherwise harmful waste. However, contrary to conventional concrete (CC), no large applications of concrete made with recycled concrete have been made and there is still a lack of knowledge in some areas of production and performance of recycled aggregate concrete (RAC). One issue concerns curing conditions: these greatly affect the performance of concrete made on site and some potential users of RAC wonder how RAC is affected by far-from-ideal curing conditions. This paper shows the main results of experiments to determine the influence of different curing conditions on the mechanical performance of concrete made with coarse recycled aggregate from crushed concrete. The properties analyzed include compressive strength, splitting tensile strength, modulus of elasticity, and abrasion resistance. The general conclusion in terms of mechanical performance is that RAC is affected by curing conditions roughly in the same way as CC. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper seeks to investigate the effectiveness of sea-defense structures in preventing/reducing the tsunami overtopping as well as evaluating the resulting tsunami impact at El Jadida, Morocco. Different tsunami wave conditions are generated by considering various earthquake scenarios of magnitudes ranging from M-w = 8.0 to M-w = 8.6. These scenarios represent the main active earthquake faults in the SW Iberia margin and are consistent with two past events that generated tsunamis along the Atlantic coast of Morocco. The behavior of incident tsunami waves when interacting with coastal infrastructures is analyzed on the basis of numerical simulations of near-shore tsunami waves' propagation. Tsunami impact at the affected site is assessed through computing inundation and current velocity using a high-resolution digital terrain model that incorporates bathymetric, topographic and coastal structures data. Results, in terms of near-shore tsunami propagation snapshots, waves' interaction with coastal barriers, and spatial distributions of flow depths and speeds, are presented and discussed in light of what was observed during the 2011 Tohoku-oki tsunami. Predicted results show different levels of impact that different tsunami wave conditions could generate in the region. Existing coastal barriers around the El Jadida harbour succeeded in reflecting relatively small waves generated by some scenarios, but failed in preventing the overtopping caused by waves from others. Considering the scenario highly impacting the El Jadida coast, significant inundations are computed at the sandy beach and unprotected areas. The modeled dramatic tsunami impact in the region shows the need for additional tsunami standards not only for sea-defense structures but also for the coastal dwellings and houses to provide potential in-place evacuation.
Resumo:
Low-density parity-check (LDPC) codes are nowadays one of the hottest topics in coding theory, notably due to their advantages in terms of bit error rate performance and low complexity. In order to exploit the potential of the Wyner-Ziv coding paradigm, practical distributed video coding (DVC) schemes should use powerful error correcting codes with near-capacity performance. In this paper, new ways to design LDPC codes for the DVC paradigm are proposed and studied. The new LDPC solutions rely on merging parity-check nodes, which corresponds to reduce the number of rows in the parity-check matrix. This allows to change gracefully the compression ratio of the source (DCT coefficient bitplane) according to the correlation between the original and the side information. The proposed LDPC codes reach a good performance for a wide range of source correlations and achieve a better RD performance when compared to the popular turbo codes.
Resumo:
When timber elements in heritage buildings are moderately degraded by fungi and assuming underlying moisture problems have been solved, two actions can be taken: i) use a biocide to stop fungal activity; ii) consolidate the degraded elements so that the timber keeps on fulfilling its structural and decorative functions. The aim of this work is to investigate the mechanical performance of maritime pine wood degraded by fungi after being treated with a biocide followed by impregnation with a polymer product. Three commercially available products were used: a boron water-based biocide, an acrylic consolidant and an epoxy-based consolidant. Treated and consolidated specimens were subjected to mechanical tests: axial compression test (NP 618), static surface hardness (ISO 3350) and bending test (NP 619). Sets of replicates were subjected to an evaporation ageing test (EN 73) after application of the products and also tested for mechanical behaviour. An increase in mechanical strength was observed for both consolidants with no significant influence from the previous use of biocide product. The specimens subjected to ageing showed a slightly better general mechanical performance.
Resumo:
The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties. © 2014 RILEM
Resumo:
It is considered that using crushed recycled concrete as aggregate for concrete production is a viable alternative to dumping and would help to conserve abiotic resources. This use has fundamentally been based on the coarse fraction because the fine fraction is likely to degrade the performance of the resulting concrete. This paper presents results from a research work undertaken at Institut Superior Tecnico (IST), Lisbon, Portugal, in which the effects of incorporating two types of superplasticizer on the mechanical performance of concrete containing fine recycled aggregate were evaluated. The purpose was to see if the addition of superplasticizer would offset the detrimental effects associated with the use of fine recycled concrete aggregate. The experimental programme is described and the results of tests for splitting tensile strength, modulus of elasticity and abrasion resistance are presented. The relative performance of concrete made with recycled aggregate was found to decrease. However, the same concrete with admixtures in general exhibited a better mechanical performance than the reference mixes without admixtures or with a less active superplasticizer. Therefore, it is argued that the mechanical performance of concrete made with fine recycled concrete aggregates can be as good as that of conventional concrete, if superplasticizers are used to reduce the water-cement ratio of the former concrete.
Resumo:
Mg alloys can be used as bioresorsable metallic implants. However, the high corrosion rate of magnesium alloys has limited their biomedical applications. Although Mg ions are essential to the human body, an excess may cause undesirable health effects. Therefore, surface treatments are required to enhance the corrosion resistance of magnesium parts, decreasing its rate to biocompatible levels and allowing its safe application as bioresorbable metallic implants. The application of biocompatible silane coatings is envisaged as a suitable strategy for retarding the corrosion process of magnesium alloys. In the current work, a new glycidoxypropyltrimethoxysilane (GPTMS) based coating was tested on AZ31 magnesium substrates subjected to different surface conditioning procedures before coating deposition. The surface conditioning included a short etching with hydrofluoric acid (HF) or a dc polarisation in alkaline electrolyte. The silane coated samples were immersed in Hank's solution and the protective performance of the coating was studied through electrochemical impedance spectroscopy (EIS). The EIS data was treated by new equivalent circuit models and the results revealed that the surface conditioning process plays a key role in the effectiveness of the silane coating. The HF treated samples led to the highest impedance values and delayed the coating degradation, compared to the mechanically polished samples or to those submitted to dc polarisation.
Resumo:
This research aims at analysing the mechanical performance of concrete with recycled aggregates (RA) from construction and demolition waste (CDW) from various locations in Portugal. First the characteristics of the various aggregates (natural and recycled) used in the production of concrete were thoroughly analysed. The composition of the RA was determined and several physical and chemical tests of the aggregates were performed. In order to evaluate the mechanical performance of concrete, compressive strength (in cubes and cylinders), splitting tensile strength, modulus of elasticity and abrasion resistance tests were performed. Concrete mixes with RA from CDW from several recycling plants were evaluated, in order to understand the influence that the RA's collection point, and consequently their composition, has on the characteristics of the mixes produced. The analysis of the mechanical performance allowed concluding that the use of RA worsens most of the properties tested, especially when fine RA are used. On the other hand, there was an increase in abrasion resistance when coarse RA were used. In global terms, the use of this type of aggregates, in limited contents, is viable from a mechanical viewpoint. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties.
Resumo:
This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).