6 resultados para Pattern-search methods

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de Mestrado para a obtenção de grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular, when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type. We prove under the common assumptions used in direct search for single objective optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step. Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Meshless methods are used for their capability of producing excellent solutions without requiring a mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements. However, node placement is still an open question, specially in strong form collocation meshless methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-conditioned matrices. In order to optimize node position and number, a direct multisearch technique for multiobjective optimization is used to optimize node distribution in the global collocation method using radial basis functions. The optimization method is applied to the bending of isotropic simply supported plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.