3 resultados para Parkinsons-disease Result

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formation of amyloid structures is a neuropathological feature that characterizes several neurodegenerative disorders, such as Alzheimer´s and Parkinson´s disease. Up to now, the definitive diagnosis of these diseases can only be accomplished by immunostaining of post mortem brain tissues with dyes such Thioflavin T and congo red. Aiming at early in vivo diagnosis of Alzheimer´s disease (AD), several amyloid-avid radioprobes have been developed for b-amyloid imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT). The aim of this paper is to present a perspective of the available amyloid imaging agents, special those that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.