40 resultados para Parallel or distributed processing
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
This work focuses on the study of flow and propagation of magma using rock magnetic analyses along sections across the thick Jurassic dyke of Foum-Zguid (Southern Morocco). Thermomagnetic data show that Ti-poor titanomagnetite is the main magnetic carrier. Petrographic analysis shows that the main Ti phase (ilmenite) occurs either as lamellae within spinel (center of the dyke) or as isolated grains (dyke margin). Bulk magnetic properties display distinct behavior according to the distance to the dyke margin; grain size of the main magnetic carrier decreases towards the center of the dyke, while the natural remanent magnetization and the bulk magnetic susceptibility increase. Only the magnetic susceptibility ellipsoid close to the dyke margin corresponds to that usually found in thin dykes, with the magnetic foliation sub parallel to dyke margins. Maximum principal axis is in most cases either parallel or perpendicular to the intersection between the planes of magnetic foliation and dyke wall. Moreover, when this axis is perpendicular to the intersection it is associated with a more oblate magnetic susceptibility ellipsoid shape, indicating the presence of complex magnetic fabrics. The studied magnetic properties show that, in this 100 m wide thick dyke, flow structures related with dyke propagation are only preserved close to the quickly cooled dyke margins.
Resumo:
Mestrado em Medicina Nuclear.
Resumo:
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres. (C) 2013 AIP Publishing LLC.
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Even though Software Transactional Memory (STM) is one of the most promising approaches to simplify concurrent programming, current STM implementations incur significant overheads that render them impractical for many real-sized programs. The key insight of this work is that we do not need to use the same costly barriers for all the memory managed by a real-sized application, if only a small fraction of the memory is under contention lightweight barriers may be used in this case. In this work, we propose a new solution based on an approach of adaptive object metadata (AOM) to promote the use of a fast path to access objects that are not under contention. We show that this approach is able to make the performance of an STM competitive with the best fine-grained lock-based approaches in some of the more challenging benchmarks. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Mainland Portugal, on the southwestern edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation (< 5 mm yr(-1)), which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). Some offshore earthquakes are nucleated on old and cold lithospheric mantle, at depths down to 60 km. The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. In this paper, we analyse the instrumental earthquake catalogue for western Iberia, which covers the period between 1961 and 2013. Between 2010 and 2012, the catalogue was enriched with data from dense broad-band deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high-quality data, earthquakes collapse into well-defined clusters and lineations. We identify and characterize the most outstanding clusters and lineations of epicentres and correlate them with geophysical and tectonic features (historical seismicity, topography, geologically mapped faults, Moho depth, free-air gravity, magnetic anomalies and geotectonic units). Both onshore and offshore, clusters and lineations of earthquakes are aligned preferentially NNE-SSW and WNW-ESE. Cumulative seismic moment and epicentre density decrease from south to north, with increasing distance from the plate boundary. Only few earthquake lineations coincide with geologically mapped faults. Clusters and lineations that do not match geologically mapped faults may correspond to previously unmapped faults (e.g. blind faults), rheological boundaries or distributed fracturing inside blocks that are more brittle and therefore break more easily than neighbour blocks. The seismicity map of western Iberia presented in this article opens important questions concerning the regional seismotectonics. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, such as western Iberia, where high-magnitude earthquakes occur with long recurrence intervals.
Resumo:
In distributed video coding, motion estimation is typically performed at the decoder to generate the side information, increasing the decoder complexity while providing low complexity encoding in comparison with predictive video coding. Motion estimation can be performed once to create the side information or several times to refine the side information quality along the decoding process. In this paper, motion estimation is performed at the decoder side to generate multiple side information hypotheses which are adaptively and dynamically combined, whenever additional decoded information is available. The proposed iterative side information creation algorithm is inspired in video denoising filters and requires some statistics of the virtual channel between each side information hypothesis and the original data. With the proposed denoising algorithm for side information creation, a RD performance gain up to 1.2 dB is obtained for the same bitrate.
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
Many Hyperspectral imagery applications require a response in real time or near-real time. To meet this requirement this paper proposes a parallel unmixing method developed for graphics processing units (GPU). This method is based on the vertex component analysis (VCA), which is a geometrical based method highly parallelizable. VCA is a very fast and accurate method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Experimental results obtained for simulated and real hyperspectral datasets reveal considerable acceleration factors, up to 24 times.
Resumo:
In this paper, we develop a fast implementation of an hyperspectral coded aperture (HYCA) algorithm on different platforms using OpenCL, an open standard for parallel programing on heterogeneous systems, which includes a wide variety of devices, from dense multicore systems from major manufactures such as Intel or ARM to new accelerators such as graphics processing units (GPUs), field programmable gate arrays (FPGAs), the Intel Xeon Phi and other custom devices. Our proposed implementation of HYCA significantly reduces its computational cost. Our experiments have been conducted using simulated data and reveal considerable acceleration factors. This kind of implementations with the same descriptive language on different architectures are very important in order to really calibrate the possibility of using heterogeneous platforms for efficient hyperspectral imaging processing in real remote sensing missions.
Resumo:
A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.
Resumo:
Nanofiltration process for the treatment/valorisation of cork processing wastewaters was studied. A DS-5 DK 20/40 (GE Water Technologies) nanofiltration membrane/module was used, having 2.09 m(2) of surface area. Hydraulic permeability was determined with pure water and the result was 5.2 L.h(-1).m(-2).bar(-1). The membrane presents a rejection of 51% and 99% for NaCl and MgSO4 salts, respectively. Two different types of regimes were used in the wastewaters filtration process, total recycling mode and concentration mode. The first filtration regime showed that the most favourable working transmembrane pressure was 7 bar working at 25 degrees C. For the concentration mode experiments it was observed a 30% decline of the permeate fluxes when a volumetric concentration factor of 5 was reached. The permeate COD, BOD5, colour and TOC rejection values remained well above the 90% value, which allows, therefore, the concentration of organic matter (namely the tannin fraction) in the concentrate stream that can be further used by other industries. The permeate characterization showed that it cannot be directly discharged to the environment as it does not fulfil the values of the Portuguese discharge legislation. However, the permeate stream can be recycled to the process (boiling tanks) as it presents no colour and low TOC (< 60 ppm) or if wastewater discharge is envisaged we have observed that the permeate biodegradability is higher than 0.5, which renders conventional wastewater treatments feasible.
Resumo:
The advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.