28 resultados para Parallel methods
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
This letter presents a new parallel method for hyperspectral unmixing composed by the efficient combination of two popular methods: vertex component analysis (VCA) and sparse unmixing by variable splitting and augmented Lagrangian (SUNSAL). First, VCA extracts the endmember signatures, and then, SUNSAL is used to estimate the abundance fractions. Both techniques are highly parallelizable, which significantly reduces the computing time. A design for the commodity graphics processing units of the two methods is presented and evaluated. Experimental results obtained for simulated and real hyperspectral data sets reveal speedups up to 100 times, which grants real-time response required by many remotely sensed hyperspectral applications.
Resumo:
Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.
Resumo:
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
Resumo:
Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.
Resumo:
One of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
In this work, 14 primary schools of Lisbon city, Portugal, followed a questionnaire of the ISAAC - International Study of Asthma and Allergies in Childhood Program, in 2009/2010. The questionnaire contained questions to identify children with respiratory diseases (wheeze, asthma and rhinitis). Total particulate matter (TPM) was passively collected inside two classrooms of each of 14 primary schools. Two types of filter matrices were used to collect TPM: Millipore (IsoporeTM) polycarbonate and quartz. Three campaigns were selected for the measurement of TPM: Spring, Autumn and Winter. The highest difference between the two types of filters is that the mass of collected particles was higher in quartz filters than in polycarbonate filters, even if their correlation is excellent. The highest TPM depositions occurred between October 2009 and March 2010, when related with rhinitis proportion. Rhinitis was found to be related to TPM when the data were grouped seasonally and averaged for all the schools. For the data of 2006/2007, the seasonal variation was found to be related to outdoor particle deposition (below 10 μm).
Resumo:
Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.
Resumo:
Background: With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results: PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions: PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.
Resumo:
Personal memories composed of digital pictures are very popular at the moment. To retrieve these media items annotation is required. During the last years, several approaches have been proposed in order to overcome the image annotation problem. This paper presents our proposals to address this problem. Automatic and semi-automatic learning methods for semantic concepts are presented. The automatic method is based on semantic concepts estimated using visual content, context metadata and audio information. The semi-automatic method is based on results provided by a computer game. The paper describes our proposals and presents their evaluations.
Resumo:
Tomographic image can be degraded, partially by patient based attenuation. The aim of this paper is to quantitatively verify the effects of attenuation correction methods Chang and CT in 111In studies through the analysis of profiles from abdominal SPECT, correspondent to a uniform radionuclide uptake organ, the left kidney.
Resumo:
Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates fromAspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecularmethodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0% in the air samples, 24.0 versus 16.0% in the surfaces, 0 versus 32.6% in new litter, and 9.9 versus 15.9%in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.
Resumo:
Objective - To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Material and methods - Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of 99mTc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann–Whitney–Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal–Wallis test to assess simulation accuracy for this parameter. Results - There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30cm) with energy windows of 126–154 keV and 130–158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126–154 keV and 130–158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Conclusions - Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated.