16 resultados para Open-system Fractional Crystallization
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Os edifícios estão a ser construídos com um número crescente de sistemas de automação e controlo não integrados entre si. Esta falta de integração resulta num caos tecnológico, o que cria dificuldades nas três fases da vida de um edifício, a fase de estudo, a de implementação e a de exploração. O desenvolvimento de Building Automation System (BAS) tem como objectivo assegurar condições de conforto, segurança e economia de energia. Em edifícios de grandes dimensões a energia pode representar uma percentagem significativa da factura energética anual. Um BAS integrado deverá contribuir para uma diminuição significativa dos custos de desenvolvimento, instalação e gestão do edifício, o que pode também contribuir para a redução de CO2. O objectivo da arquitectura proposta é contribuir para uma estratégia de integração que permita a gestão integrada dos diversos subsistemas do edifício (e.g. aquecimento, ventilação e ar condicionado (AVAC), iluminação, segurança, etc.). Para realizar este controlo integrado é necessário estabelecer uma estratégia de cooperação entre os subsistemas envolvidos. Um dos desafios para desenvolver um BAS com estas características consistirá em estabelecer a interoperabilidade entre os subsistemas como um dos principais objectivos a alcançar, dado que o fornecimento dos referidos subsistemas assenta normalmente numa filosofia multi-fornecedor, sendo desenvolvidos usando tecnologias heterogéneas. Desta forma, o presente trabalho consistiu no desenvolvimento de uma plataforma que se designou por Building Intelligence Open System (BIOS). Na implementação desta plataforma adoptou-se uma arquitectura orientada a serviços ou Service Oriented Architecture (SOA) constituída por quatro elementos fundamentais: um bus cooperativo, denominado BIOSbus, implementado usando Jini e JavaSpaces, onde todos os serviços serão ligados, disponibilizando um mecanismo de descoberta e um mecanismo que notificada as entidades interessadas sobre alterações do estado de determinado componente; serviços de comunicação que asseguram a abstracção do Hardware utilizado da automatização das diversas funcionalidades do edifício; serviços de abstracção de subsistemas no acesso ao bus; clientes, este podem ser nomeadamente uma interface gráfica onde é possível fazer a gestão integrada do edifício, cliente de coordenação que oferece a interoperabilidade entre subsistemas e os serviços de gestão energética que possibilita a activação de algoritmos de gestão racional de energia eléctrica.
Resumo:
A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
Resumo:
This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.
Resumo:
This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Traditionally, a country's electoral system requires the voter to vote at a specific day and place, which conflicts with the mobility usually seen in modern live styles. Thus, the widespread of Internet (mobile) broadband access can be seen as an opportunity to deal with this mobility problem, i.e. the adoption of an Internet voting system can make the live of voter's much more convenient; however, a widespread Internet voting systems adoption relies on the ability to develop trustworthy systems, i.e. systems that are verifiable and preserve the voter's privacy. Building such a system is still an open research problem. Our contribution is a new Internet voting system: EVIV, a highly sound End-to-end Verifiable Internet Voting system, which offers full voter's mobility and preserves the voter's privacy from the vote casting PC even if the voter votes from a public PC, such as a PC at a cybercafe or at a public library. Additionally, EVIV has private vote verification mechanisms, in which the voter just has to perform a simple match of two small strings (4-5 alphanumeric characters), that detect and protect against vote manipulations both at the insecure vote client platform and at the election server side. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
This paper develops an energy management system with integration of smart meters for electricity consumers in a smart grid context. The integration of two types of smart meters (SM) are developed: (i) consumer owned SM and (ii) distributor owned SM. The consumer owned SM runs over a wireless platform - ZigBee protocol and the distributor owned SM uses the wired environment - ModBus protocol. The SM are connected to a SCADA system (Supervisory Control And Data Acquisition) that supervises a network of Programmable Logic Controllers (PLC). The SCADA system/PLC network integrates different types of information coming from several technologies present in modern buildings. The developed control strategy implements a hierarchical cascade controller where inner loops are performed by local PLCs, and the outer loop is managed by a centralized SCADA system, which interacts with the entire local PLC network. In order to implement advanced controllers, a communication channel was developed to allow the communication between the SCADA system and the MATLAB software. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).