8 resultados para Occupational Hazards
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Portugal has been the world leader in the cork sector in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi, raising concerns as potential occupational hazards in cork industry. The application of molecular tools is crucial in this setting, since fungal species with faster growth rates may hide other species with clinical relevance, such as species belonging to P. glabrum and A. fumigatus complexes. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards. Air-control measures are crucial for reducing dissemination of airborne biological particles in hospitals. The objective of this study was to perform a survey of bioaerosol quality in different sites in a Portuguese Hospital, namely the operating theater (OT), the emergency service (ES) and the surgical ward (SW). Aerobic mesophilic bacterial counts (BCs) and fungal load (FL) were assessed by impaction directly onto tryptic soy agar and malt extract agar supplemented with antibiotic chloramphenicol (0.05%) plates, respectively using a MAS-100 air sampler. The ES revealed the highest airborne microbial concentrations (BC range 240-736 CFU/m(3) CFU/m(3); FL range 27-933 CFU/m(3)), exceeding, at several sampling sites, conformity criteria defined in national legislation [6]. Bacterial concentrations in the SW (BC range 99-495 CFU/m(3)) and the OT (BC range 12-170 CFU/m(3)) were under recommended criteria. While fungal levels were below 1 CFU/m(3) in the OT, in the SW (range 1-32 CFU/m(3)), there existed a site with fungal indoor concentrations higher than those detected outdoors. Airborne Gram-positive cocci were the most frequent phenotype (88%) detected from the measured bacterial population in all indoor environments. Staphylococcus (51%) and Micrococcus (37%) were dominant among the bacterial genera identified in the present study. Concerning indoor fungal characterization, the prevalent genera were Penicillium (41%) and Aspergillus (24%). Regular monitoring is essential for assessing air control efficiency and for detecting irregular introduction of airborne particles via clothing of visitors and medical staff or carriage by personal and medical materials. Furthermore, microbiological survey data should be used to clearly define specific air quality guidelines for controlled environments in hospital settings.
Resumo:
Portugal has been the world leader in the cork sectr in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi raising concerns as occupational hazards in cork industry. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city. The chosen fungal species are the ones most frequently associated with respiratory problems in workers from these industries.
Resumo:
Although a clear correlation between levels of fungi in the air and health impacts has not been shown in epidemiological studies, fungi must be regarded as potential occupational health hazards. Fungi can have an impact on human health in four different ways: (1) they can infect humans, (2) they may act as allergens, (3) they can be toxigenic, or (4) they may cause inflammatory reactions. Fungi of concern in occupational hygiene are mostly non-pathogenic or facultative pathogenic (opportunistic) species, but are relevant as allergens and mycotoxins producers. It is known that the exclusive use of conventional methods for fungal quantification (fungal culture) may underestimate the results due to different reasons. The incubation temperature chosen will not be the most suitable for every fungal species, resulting in the inhibition of some species and the favouring of others. Differences in fungi growth rates may also result in data underestimation, since the fungal species with higher growth rates may inhibit others species’ growth. Finally, underestimated data can result from non-viable fungal particles that may have been collected or fungal species that do not grow in the culture media used, although these species may have clinical relevance in the context. Due to these constraints occupational exposure assessment, in setings with high fungal contamination levels, should follow these steps: Apply conventional methods to obtain fungal load information (air and surfaces) regarding the most critical scenario previously selected; Guideline comparation aplying or legal requirements or suggested limits by scientific and/or technical organizations. We should also compare our results with others from the same setting (if there is any); Select the most suitable indicators for each setting and apply conventional-culture methods and also molecular tools. These methodology will ensure a more real characterization of fungal burden in each setting and, consequently, permits to identify further measures regarding assessment of fungal metabolites, and also a more adequate workers health surveillance. The methodology applied to characterize fungal burden in several occupational environments, focused in Aspergillus spp. prevalence, will be present and discussed.
Resumo:
Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.
Resumo:
The simultaneous presence of fungi and particles in horse stable environment can create a singular exposure condition because particles have been reported has a good carrier for microorganisms and their metabolites. This study intends to characterize this setting and to recognize fungi and particles occupational exposure.
Resumo:
The most common scenario in occupational settings is the co-exposure to several risk factors. This aspect has to be considered in the risk assessment process because can alter the toxicity and the health effects when dealing with a co-exposure to two or more chemical agents. A study was developed aiming to elucidate if there is occupational co-exposure to aflatoxin B1 (AFB1) and ochratoxin (OTA) in Portuguese swine production. To assess occupational exposure to both mycotoxins, a biomarker of internal dose was used. The same blood samples from workers of seven swine farms and controls were consider to measure AFB1 and OTA. Twenty one workers (75%) showed detectable levels of AFB1 with values ranging from <1 ng/ml to 8.94 ng/ml and with significantly higher concentration when compared with controls. In the case of OTA, there wasn't found a statistical difference between workers and controls and the values for workers group ranged from 0.34 ng/ml to 3.12 ng/ml and 1.76 ng/ml to 3.42 ng/ml for control group. The results suggest that occupational exposure to AFB1 occurs. However, in the case of OTA results, seems that food consumption plays an important role in both groups exposure. The results claim attention for the possible implications on health of this co-exposure.