3 resultados para Oberflächennahe Geothermie, Wärmeleitfähigkeit, Thermal Response Test, Erdwärmesonde, Hydrogeologie
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purpose - The study evaluates the pre- and post-training lesion localisation ability of a group of novice observers. Parallels are drawn with the performance of inexperienced radiographers taking part in preliminary clinical evaluation (PCE) and ‘red-dot’ systems, operating within radiography practice. Materials and methods - Thirty-four novice observers searched 92 images for simulated lesions. Pre-training and post-training evaluations were completed following the free-response the receiver operating characteristic (FROC) method. Training consisted of observer performance methodology, the characteristics of the simulated lesions and information on lesion frequency. Jackknife alternative FROC (JAFROC) and highest rating inferred ROC analyses were performed to evaluate performance difference on lesion-based and case-based decisions. The significance level of the test was set at 0.05 to control the probability of Type I error. Results - JAFROC analysis (F(3,33) = 26.34, p < 0.0001) and highest-rating inferred ROC analysis (F(3,33) = 10.65, p = 0.0026) revealed a statistically significant difference in lesion detection performance. The JAFROC figure-of-merit was 0.563 (95% CI 0.512,0.614) pre-training and 0.677 (95% CI 0.639,0.715) post-training. Highest rating inferred ROC figure-of-merit was 0.728 (95% CI 0.701,0.755) pre-training and 0.772 (95% CI 0.750,0.793) post-training. Conclusions - This study has demonstrated that novice observer performance can improve significantly. This study design may have relevance in the assessment of inexperienced radiographers taking part in PCE or commenting scheme for trauma.
Resumo:
Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.