2 resultados para Northeastern Brazil
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
P>Reconstruction of the South Atlantic opening has long been a matter of debate and several models have been proposed. One problem in tracing properly the Atlantic history arises from the existence of a long interval without geomagnetic reversals, the Cretaceous Normal Superchron, for which ages are difficult to assign. Palaeomagnetism may help in addressing this issue if high-quality palaeomagnetic poles are available for the two drifting continental blocks, and if precise absolute ages are available. In this work we have investigated the Cabo Magmatic Province, northeastern Brazil, recently dated at 102 +/- 1 Ma (zircon fission tracks, Ar39/Ar40). All volcanic and plutonic rocks showed stable thermal and AF demagnetization patterns, and exhibit primary magnetic signatures. AMS data also support a primary origin for the magnetic fabric and is interpreted to be contemporaneous of the rock formation. The obtained pole is located at 335.9 degrees E/87.9 degrees S (N = 24; A(95) = 2.5; K = 138) and satisfies modern quality criteria, resulting in a reference pole for South America at similar to 100 Ma. This new pole also gives an insight to test and discuss the kinematic models currently proposed for the South Atlantic opening during mid-Cretaceous.
Resumo:
The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, are discussed based on five wide-angle seismic profiles acquired during the Santos Basin (SanBa) experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by Klingelhoefer et al. (2014). Beneath the continental shelf, a similar to 100km wide necking zone (Domain N) is imaged where the continental crust thins abruptly from similar to 40km to less than 15km. Toward the ocean, most of the SSPS (Domains A and C) shows velocity ranges, velocity gradients, and a Moho interface characteristic of the thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7km) continental crust, its northeastern part depicts a 2-4km thick upper layer (6.0-6.5km/s) overlying an anomalous velocity layer (7.0-7.8km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust, or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The deep structure and v-shaped segmentation of the SSPS confirm that an initial episode of rifting occurred there obliquely to the general opening direction of the South Atlantic Central Segment.