12 resultados para Nonsmooth Critical Point Theory
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]
Resumo:
We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).
Resumo:
We use a simple model of associating fluids which consists of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the bonding interactions between each pair of spots have strengths epsilon(AA), epsilon(BB), and epsilon(AB). The theory is applied over the whole range of bonding strengths and the results are interpreted in terms of the equilibrium cluster structures of the phases. In addition to our numerical results, we derive asymptotic expansions for the free energy in the limits for which there is no liquid-vapor critical point: linear chains (epsilon(AA)not equal 0, epsilon(AB)=epsilon(BB)=0), hyperbranched polymers (epsilon(AB)not equal 0, epsilon(AA)=epsilon(BB)=0), and dimers (epsilon(BB)not equal 0, epsilon(AA)=epsilon(AB)=0). These expansions also allow us to calculate the structure of the critical fluid by perturbing around the above limits, yielding three different types of condensation: of linear chains (AA clusters connected by a few AB or BB bonds); of hyperbranched polymers (AB clusters connected by AA bonds); or of dimers (BB clusters connected by AA bonds). Interestingly, there is no critical point when epsilon(AA) vanishes despite the fact that AA bonds alone cannot drive condensation.
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here.
Resumo:
We investigate whether the liquid-vapour phase transition of strongly dipolar fluids can be understood using a model of patchy colloids. These consist of hard spherical particles with three short-ranged attractive sites (patches) on their surfaces. Two of the patches are of type A and one is of type B. Patches A on a particle may bond either to a patch A or to a patch B on another particle. Formation of an AA (AB) bond lowers the energy by epsilon AA (epsilon AB). In the limit [image omitted], this patchy model exhibits condensation driven by AB-bonds (Y-junctions). Y-junctions are also present in low-density, strongly dipolar fluids, and have been conjectured to play a key role in determining their critical behaviour. We map the dipolar Yukawa hard-sphere (DYHS) fluid onto this 2A + 1B patchy model by requiring that the latter reproduce the correct DYHS critical point as a function of the isotropic interaction strength epsilon Y. This is achieved for sensible values of epsilon AB and the bond volumes. Results for the internal energy and the particle coordination number are in qualitative agreement with simulations of DYHSs. Finally, by taking the limit [image omitted], we arrive at a new estimate for the critical point of the dipolar hard-sphere fluid, which agrees with extrapolations from simulation.
Resumo:
This paper suggests that the thought of the North-American critical theorist James W. Carey provides a relevant perspective on communication and technology. Having as background American social pragmatism and progressive thinkers of the beginning of the 20th century (as Dewey, Mead, Cooley, and Park), Carey built a perspective that brought together the political economy of Harold A. Innis, the social criticism of David Riesman and Charles W. Mills and incorporated Marxist topics such as commodification and sociocultural domination. The main goal of this paper is to explore the connection established by Carey between modern technological communication and what he called the “transmissive model”, a model which not only reduces the symbolic process of communication to instrumentalization and to information delivery, but also politically converges with capitalism as well as power, control and expansionist goals. Conceiving communication as a process that creates symbolic and cultural systems, in which and through which social life takes place, Carey gives equal emphasis to the incorporation processes of communication.If symbolic forms and culture are ways of conditioning action, they are also influenced by technological and economic materializations of symbolic systems, and by other conditioning structures. In Carey’s view, communication is never a disembodied force; rather, it is a set of practices in which co-exist conceptions, techniques and social relations. These practices configure reality or, alternatively, can refute, transform and celebrate it. Exhibiting sensitiveness favourable to the historical understanding of communication, media and information technologies, one of the issues Carey explored most was the history of the telegraph as an harbinger of the Internet, of its problems and contradictions. For Carey, Internet was seen as the contemporary heir of the communications revolution triggered by the prototype of transmission technologies, namely the telegraph in the 19th century. In the telegraph Carey saw the prototype of many subsequent commercial empires based on science and technology, a pioneer model for complex business management; an example of conflict of interest for the control over patents; an inducer of changes both in language and in structures of knowledge; and a promoter of a futurist and utopian thought of information technologies. After a brief approach to Carey’s communication theory, this paper focuses on his seminal essay "Technology and ideology. The case of the telegraph", bearing in mind the prospect of the communication revolution introduced by Internet. We maintain that this essay has seminal relevance for critically studying the information society. Our reading of it highlights the reach, as well as the problems, of an approach which conceives the innovation of the telegraph as a metaphor for all innovations, announcing the modern stage of history and determining to this day the major lines of development in modern communication systems.
Resumo:
We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by epsilon(AA) and by epsilon(AB) = r epsilon(AA), respectively. The angle theta between the 2 A-patches on each particle is fixed at 601, 90 degrees or 120 degrees. For values of r below 1/2 and above a threshold r(th)(theta) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when theta decreases. We show that the mechanism that prevents phase separation for models with decreasing values of theta is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings ( loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of theta, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.