2 resultados para Non-dermatophytes fungi

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different forms of fungal diseases affecting the nose and paranasal sinuses are recognized, including invasive and non-invasive fungal rhinosinusitis. Penicillium glabrum complex is associated with respiratory diseases such as suberosis, a typical disease of cork industry workers. In addition, Chrysonilia sitophila has been described as causing occupational asthma, associated to prolonged exposure to high counts of spores. In this study we aimed to access fungal exposure in workers from one cork industry through the mycological analysis of their nasal exudate and the environmental fungal contamination of their surroundings as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although a clear correlation between levels of fungi in the air and health impacts has not been shown in epidemiological studies, fungi must be regarded as potential occupational health hazards. Fungi can have an impact on human health in four different ways: (1) they can infect humans, (2) they may act as allergens, (3) they can be toxigenic, or (4) they may cause inflammatory reactions. Fungi of concern in occupational hygiene are mostly non-pathogenic or facultative pathogenic (opportunistic) species, but are relevant as allergens and mycotoxins producers. It is known that the exclusive use of conventional methods for fungal quantification (fungal culture) may underestimate the results due to different reasons. The incubation temperature chosen will not be the most suitable for every fungal species, resulting in the inhibition of some species and the favouring of others. Differences in fungi growth rates may also result in data underestimation, since the fungal species with higher growth rates may inhibit others species’ growth. Finally, underestimated data can result from non-viable fungal particles that may have been collected or fungal species that do not grow in the culture media used, although these species may have clinical relevance in the context. Due to these constraints occupational exposure assessment, in setings with high fungal contamination levels, should follow these steps: Apply conventional methods to obtain fungal load information (air and surfaces) regarding the most critical scenario previously selected; Guideline comparation aplying or legal requirements or suggested limits by scientific and/or technical organizations. We should also compare our results with others from the same setting (if there is any); Select the most suitable indicators for each setting and apply conventional-culture methods and also molecular tools. These methodology will ensure a more real characterization of fungal burden in each setting and, consequently, permits to identify further measures regarding assessment of fungal metabolites, and also a more adequate workers health surveillance. The methodology applied to characterize fungal burden in several occupational environments, focused in Aspergillus spp. prevalence, will be present and discussed.