2 resultados para Non-convex optimization
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
This paper is an elaboration of the simplex identification via split augmented Lagrangian (SISAL) algorithm (Bioucas-Dias, 2009) to blindly unmix hyperspectral data. SISAL is a linear hyperspectral unmixing method of the minimum volume class. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. With respect to SISAL, we introduce a dimensionality estimation method based on the minimum description length (MDL) principle. The effectiveness of the proposed algorithm is illustrated with simulated and real data.