15 resultados para Nmr Phased-array
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Deuterium NMR was used to investigate the orientational order in a composite cellulosic formed by liquid crystalline acetoxypropylcellulose (A PC) and demented nematic 4'-penty1-4-cyanobiphenyl (5CB-4 alpha d(2)) with the per centage of 85% A PC by weight Three forms of the composite including electro spun microfibers, thin film and bulk samples were analyzed The NMR results initially suggest two distinct scenarios, one whet e the 503-alpha d(2), is confined to small droplets with dimensions smaller than the magnetic coherence length and the other where the 503-alpha d(2) molecules arc aligned with the A PC network chains Polarized optical microscopy (POW from thin film samples along with all the NMR results show the presence of 5CB-alpha d(2) droplets in the composite systems with a nematic wetting layer at the APC-5CB-alpha d(2) interface that experiences and order disorder transition driven by the polymer network N-I transition The characterization of the APC network I-N transition shows a pronounced subcritical behavior within a heterogeneity scenario.
Resumo:
Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.
Resumo:
Dedicated Short Range Communications (DSRC) is the key enabling technology for the present and future vehicular communication for various applications, such as safety improvement and traffic jam mitigation. This paper describes the development of a microstrip antenna array for the roadside equipment of a DSRC system, whose characteristics are according with the vehicular communications standards. The proposed antenna, with circular polarization, has a wide bandwidth, enough to cover the current European DSRC 5.8 GHz band and the future 5.9 GHz band for next generation DSRC communications. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 2794-2796, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26394
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.
Resumo:
Agências financiadoras: National Natural Science Foundation of China - 61204077; Shenzhen Science and Technology Innovation Commission - JCYJ20120614150521967
Resumo:
The urgent need to mitigate traffic problems such as accidents, road hazards, pollution and traffic jam have strongly driven the development of vehicular communications. DSRC (Dedicated Short Range Communications) is the technology of choice in vehicular communications, enabling real time information exchange among vehicles V2V (Vehicle-to-Vehicle) and between vehicles and infrastructure V2I (Vehicle-Infrastructure). This paper presents a receiving antenna for a single lane DSRC control unit. The antenna is a non-uniform array with five microstrip patches. The obtained beam width, bandwidth and circular polarization quality, among other characteristics, are compatible with the DSRC standards, making this antenna suitable for this application. © 2014 IEEE.
Resumo:
Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
An adaptive antenna array combines the signal of each element, using some constraints to produce the radiation pattern of the antenna, while maximizing the performance of the system. Direction of arrival (DOA) algorithms are applied to determine the directions of impinging signals, whereas beamforming techniques are employed to determine the appropriate weights for the array elements, to create the desired pattern. In this paper, a detailed analysis of both categories of algorithms is made, when a planar antenna array is used. Several simulation results show that it is possible to point an antenna array in a desired direction based on the DOA estimation and on the beamforming algorithms. A comparison of the performance in terms of runtime and accuracy of the used algorithms is made. These characteristics are dependent on the SNR of the incoming signal.
Resumo:
Wireless networks have joined to the sports venues, offering to the public a set of facilities, such as the access to email, news, and also to use the social networking, uploading their photos. New challenges have emerged to provide Wi-Fi in this densely populated stadiums, such as increasing capacity and coverage. In this article, an access point antenna array to cover a sector of a stadium is presented. Its structure, designed in a low cost material allows to reduce the total manufacturing costs, an important factor due to the large number of antennas required in these venues. The material characteristic, the broad bandwidth of operation (300 MHz), along with to the low side lobe levels, important to reduce interference between sectors, makes this antenna well-positioned for wireless communications in these particular locals. (c) 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2037-2041, 2015.
Resumo:
Since long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Wireless communications had a great development in the last years and nowadays they are present everywhere, public and private, being increasingly used for different applications. Their application in the business of sports events as a means to improve the experience of the fans at the games is becoming essential, such as sharing messages and multimedia material on social networks. In the stadiums, given the high density of people, the wireless networks require very large data capacity. Hence radio coverage employing many small sized sectors is unavoidable. In this paper, an antenna is designed to operate in the Wi-Fi 5GHz frequency band, with a directive radiation pattern suitable to this kind of applications. Furthermore, despite the large bandwidth and low losses, this antenna has been developed using low cost, off-the-shelf materials without sacrificing quality or performance, essential to mass production. © 2015 EurAAP.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações