6 resultados para Nijmegen breakage sundrome
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Formaldehyde, classified by the IARC as carcinogenic in humans and experimental animals, is a chemical agent that is widely used in histopathology laboratories. The exposure to this substance is epidemiologically linked to cancer and to nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it provides information on several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomere fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA. The aim of this study is to compare the frequency of genotoxicity biomarkers, provided by the CBMN assay in peripheral lymphocytes and the MN test in buccal cells, between individuals occupationally exposed and non-exposed to formaldehyde and other environmental factors, namely tobacco and alcohol consumption. The sample comprised two groups: 56 individuals occupationally exposed to formaldehyde (cases) and 85 unexposed individuals (controls), from whom both peripheral blood and exfoliated epithelial cells of the oral mucosa were collected in order to measure the genetic endpoints proposed in this study. The mean level of TWA8h was 0.160.11ppm (<detection limit until 0.51 ppm) and the mean of ceiling values was 1.140.74ppm (0.182.93 ppm). All genotoxicity biomarkers showed significant increases in exposed workers in comparison with controls (MannWhitney test, p < 0.002) and the analysis of confounding factors showed that there were no differences between genders. As for age, only the mean MN frequency in lymphocytes was found significantly higher in elderly people among the exposed groups (p = 0.006), and there was also evidence of an interaction between age and gender with regards to that biomarker in those exposed. Smoking habits did not influence the frequency of the biomarkers, whereas alcohol consumption only influenced the MN frequency in lymphocytes in controls (p = 0.011), with drinkers showing higher mean values. These results provide evidence of the association between occupational exposure to formaldehyde and the presence of genotoxicity biomarkers.
Resumo:
Aging in humans appears to be associated with genetic instability. The cytokinesis-blocked micronucleus assay (CBMN) is a comprehensive method for measuring chromosome breakage, DNA misrepair, chromosome loss, non-disjunction, necrosis, apoptosis and cytostasis. Age and gender are the most important demographic variables affecting the micronucleus (MN) index and studies report frequencies in females being greater than those in males by a factor of 1.2 to 1.6 depending on the age group. It has been shown that a higher MN frequency directly corresponds to a decreased efficiency of DNA repair and increased genome instability.
Resumo:
Formaldehyde (FA) is ubiquitous in the environment and is a chemical agent that possesses high reactivity. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. The exposure to this substance is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronucleus (biomarkers of chromosomes breakage or loss), nucleoplasmic bridges (biomarker of chromosome rearrangement, poor repair and / or telomeres fusion) and nuclear buds (biomarker of elimination of amplified DNA). The gene X-ray repair cross-complementing group 3 (XRCC3) is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks and at least one polymorphism has been reported in codon 241, a substitution of a methionine for a threonine.
Resumo:
The use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Although the potential therapeutic benefits of hazardous drugs outweigh the risks of side effects for ill patients, exposed health care workers can have the same side effects with no therapeutic benefit. The exposure to these substances is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
Resumo:
Exposure in a hospital setting is normally due to the use of several antineoplastic drugs simultaneously. Nevertheless, the effects of such mixtures at the cell level and on human health in general are unpredictable and unique due to differences in practice of hospital oncology departments, in the number of patients, protection devices available, and the experience and safety procedures of medical staff. Health care workers who prepare or administer hazardous drugs or who work in areas where these drugs are used may be exposed to these agents in the air, on work surfaces, contaminated clothing, medical equipment, patient excreta, and other surfaces. These workers include specially pharmacists, pharmacy technicians, and nursing personnel. Exposures may occur through inhalation resulting from aerosolization of powder or liquid during reconstitution and spillage taking place while preparing or administering to patients, through Cytokinesis-block micronucleus test (CBMN) is extensively used in biomonitoring, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
Resumo:
Selenium functions as a co-factor for the reduction of antioxidant enzymes and is an important component of antioxidant enzymes. Dietary selenium significantly inhibits the induction of skin, liver, colon, and mammary tumours in experimental animals by a number of different carcinogens, as well as the induction of mammary tumours by viruses. Selenium shows a U shaped curve for functionality, whereby too little is as damaging as too much. At optimal levels, selenium may protect against the formation of DNA adducts, DNA or chromosome breakage, chromosome gain or loss, mitochondrial DNA, and telomere length and function. Aim of study: Investigate the relation between selenium and genotoxic effects in a human biomonitoring study applied to occupational health.