17 resultados para Narrow Gap Arc Welding
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
The present study is focused on the characterization of ultrafine particles emitted in welding of steel using mixtures of Ar+CO2, and intends to analyze which are the main process parameters which may have influence on the emission itself. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the distance to the welding front and also from the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne ultrafine particles seem to increase with the current intensity as fume formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. The later mixtures originate higher concentrations of ultrafine particles (as measured by number of particles by cm3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding worker's exposure. © 2014 Sociedade Portuguesa de Materiais (SPM). Published by Elsevier España, S.L. All rights reserved.
Resumo:
This paper describes the use of a Control Banding Tool to assess and further control of exposure of nanoparticles emitted during welding operations. The tool was applied to Metal Active Gas (MAG) arc welding of mild and stainless steel, providing semi-quantitative data on the process, so that protection measures could be derived, e.g. exhaust gas ventilation by hoods, local ventilation devices and containment measures. This tool is quite useful to compare and evaluate the characteristics of arc welding procedures so that more eco-friendly processes could be preferred over the more potentially noxious ones.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (similar to 50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (similar to 1.7 versus similar to 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: 'continental' and 'oceanic'. In the 'continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s(-1), the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s(-1)), and the bottom of the lid is at a depth reaching 90 100 km. In the 'oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and similar to 4.0 km s(-1), respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the 'continental' domain, near the boundary between the 'continental' and 'oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.
Resumo:
As ameaças à segurança da informação, (INFOSEC) atentam contra a perda da respectiva confidencialidade, integridade e disponibilidade, pelo que as organizações são impelidas a implementar políticas de segurança, quer ao nível físico quer ao nível lógico, utilizando mecanismos específicos de defesa. O projecto Network Air Gap Controller (NAGC) foi concebido no sentido de contribuir para as questões da segurança, designadamente daquelas que se relacionam directamente com a transferência de informação entre redes de classificação de segurança diferenciadas ou de sensibilidades distintas, sem requisitos de comunicação em tempo real, e que mereçam um maior empenho nas condições de robustez, de disponibilidade e de controlo. Os organismos que, em razão das atribuições e competências cometidas, necessitam de fazer fluir informação entre este tipo de redes, são por vezes obrigados a realizar a transferência de dados com recurso a um processo manual, efectuado pelo homem e não pela máquina, que envolve dispositivos amovivéis, como sejam o CD, DVD, PEN, discos externos ou switches manuais. Neste processo, vulgarmente designado por Network Air Gap (NAG), o responsável pela transferência de dados deverá assumir de forma infalível, como atribuições intrínsecas e inalienáveis da função exercida, as garantias do cumprimento de um vasto conjunto de normas regulamentares. As regras estabelecidas desdobram-se em ferramentas e procedimentos que se destinam, por exemplo, à guarda em arquivo de todas as transferências efectuadas; à utilização de ferramentas de segurança (ex: antivírus) antes da colocação da informação na rede de classificação mais elevada; ao não consentimento de transferência de determinados tipos de ficheiro (ex: executáveis) e à garantia de que, em consonância com a autonomia que normalmente é delegada no elemento responsável pela operação das comunicações, apenas se efectuam transferências de informação no sentido da rede de classificação inferior para a rede de classificação mais elevada. Face ao valor da informação e do impacto na imagem deste tipo de organizações, o operador de comunicações que não cumpra escrupulosamente o determinado é inexoravelmente afastado dessas funções, sendo que o processo de apuramento de responsabilidades nem sempre poderá determinar de forma inequívoca se as razões apontam para um acto deliberado ou para factores não intencionais, como a inépcia, o descuido ou a fadiga. Na realidade, as actividades periódicas e rotineiras, tornam o homem propenso à falha e poderão ser incontornavelmente asseguradas, sem qualquer tipo de constrangimentos ou diminuição de garantias, por soluções tecnológicas, desde que devidamente parametrizadas, adaptadas, testadas e amadurecidas, libertando os recursos humanos para tarefas de manutenção, gestão, controlo e inspecção. Acresce que, para este tipo de organizações, onde se multiplicam o número de redes de entrada de informação, com diferentes classificações e actores distintos, e com destinatários específicos, a utilização deste tipo de mecanismos assume uma importância capital. Devido a este factor multiplicativo, impõe-se que o NAGC represente uma opção válida em termos de oferta tecnológica, designadamente para uma gama de produtos de baixíssimo custo e que possa desenvolver-se por camadas de contributo complementar, em função das reais necessidades de cada cenário.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica Ramo de processos químicos
Resumo:
Expanding far beyond traditional applications at telecommunications wavelengths, the SiC photonic devices has recently proven its merits for working with visible range optical signals. Reconfigurable wavelength selectors are essential sub-systems for implementing reconfigurable WDM networks and optical signal processing. Visible range to telecom band spectral translation in SiC/Si can be accomplished using wavelength selector under appropriated optical bias, acting as reconfigurable active filters. In this paper we present a monolithically integrated wavelength selector based on a multilayer SiC/Si integrated optical filters that requires optical switches to select wavelengths. The selector filter is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Red, green, blue and violet communication channels are transmitted together, each one with a specific bit sequence. The combined optical signal is analyzed by reading out the generated photocurrent, under different background wavelengths applied either from the front or the back side. The backgrounds acts as channel selectors that selects one or more channels by splitting portions of the input multi-channel optical signals across the front and back photodiodes. The transfer characteristics effects due to changes in steady state light, irradiation side and frequency are presented. The relationship between the optical inputs and the digital output levels is established. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.