1 resultado para Nanoscale periodic corrugation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Aberdeen University (5)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (47)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (106)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (88)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (10)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (75)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (10)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (99)
- Queensland University of Technology - ePrints Archive (127)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (64)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (21)
- University of Queensland eSpace - Australia (23)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Relevância:
Resumo:
We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.