7 resultados para N-KdV hierarchy

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades considerations about equipments' availability became an important issue, as well as its dependence on components characteristics such as reliability and maintainability. This is particularly of outstanding importance if one is dealing with high risk industrial equipments, where these factors play an important and fundamental role in risk management when safety or huge economic values are in discussion. As availability is a function of reliability, maintainability, and maintenance support activities, the main goal is to improve one or more of these factors. This paper intends to show how maintainability can influence availability and present a methodology to select the most important attributes for maintainability using a partial Multi Criteria Decision Making (pMCDM). Improvements in maintainability can be analyzed assuming it as a probability related with a restore probability density function [g(t)].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of 9H-thioxanthen-9-one derivatives and two precursors, 2-[(4-bromophenyl) sulfanyl]-5-nitrobenzoic acid and 2-[(4-aminophenyl) sulfanyl]-5-nitrobenzoic acid, were synthesized and studied in order to assess the role of the different substituent groups in determining the supramolecular motifs. From our results we can conclude that Etter's rules are obeyed: whenever present the -COOH head to head strong hydrogen bonding dimer, R-2(2)(8) synthon, prevails as the dominant interaction. As for -NH2, the best donor when present also follows the expected hierarchy, an NH center dot center dot center dot O(COOH) was formed in the acid precursor (2) and an NH center dot center dot center dot O(C=O) in the thioxanthone (4). The main role played by weaker hydrogen bonds such as CH center dot center dot center dot O, and other intermolecular interactions, pi-pi and Br center dot center dot center dot O, as well as the geometric restraints of packing patterns shows the energetic interplay governing crystal packing. A common feature is the relation between the p-p stacking and the unit cell dimensions. A new synthon notation, R`, introduced in this paper, refers to the possibility of accounting for intra- and intermolecular interactions into recognizable and recurring aggregate patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed analytic and numerical study of baryogenesis through leptogenesis is performed in the framework of the standard model of electroweak interactions extended by the addition of three right-handed neutrinos, leading to the seesaw mechanism. We analyze the connection between GUT-motivated relations for the quark and lepton mass matrices and the possibility of obtaining a viable leptogenesis scenario. In particular, we analyze whether the constraints imposed by SO(10) GUTs can be compatible with all the available solar, atmospheric and reactor neutrino data and, simultaneously, be capable of producing the required baryon asymmetry via the leptogenesis mechanism. It is found that the Just-So(2) and SMA solar solutions lead to a viable leptogenesis even for the simplest SO(10) GUT, while the LMA, LOW and VO solar solutions would require a different hierarchy for the Dirac neutrino masses in order to generate the observed baryon asymmetry. Some implications on CP violation at low energies and on neutrinoless double beta decay are also considered. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Higiene e Segurança no Trabalho.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.