4 resultados para Myocardial necrosis
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Myocardial perfusion-gated-SPECT (MP-gated-SPECT) imaging often shows radiotracer uptake in abdominal organs. This accumulation interferes frequently with qualitative and quantitative assessment of the infero-septal region of myocardium. The objective of this study is to evaluate the effect of ingestion of different fat content on the reduction of extra-myocardial uptake and to improve MP-gated-SPECT image quality. In this study, 150 patients (65 ^ 18 years) who were referred for MP-gated-SPECT underwent a 1-day-protocol including imaging after stress (physical or pharmacological) and resting conditions. All patients gave written informed consent. Patients were subdivided into five groups: GI, GII, GIII, GIV and GV. In the first four groups, patients ate two chocolate bars with different fat content. Patients in GV – control group (CG) – had just water. Uptake indices (UI) of myocardium (M)/liver(L) and M/stomach–proximal bowel(S) revealed lower UI of M/S at rest in all groups. Both stress and rest studies using different food intake indicate that patients who ate chocolate with different fat content showed better UI of M/L than the CG. The UI of M/L and M/S of groups obtained under physical stress are clearly superior to that of groups obtained under pharmacological stress. These differences are only significant in patients who ate high-fat chocolate or drank water. The analysis of all stress studies together (GI, GII, GIII and GIV) in comparison with CG shows higher mean ranks of UI of M/L for those who ate high-fat chocolate. After pharmacological stress, the mean ranks of UI of M/L were higher for patients who ate high- and low-fat chocolate. In conclusion, eating food with fat content after radiotracer injection increases, respectively, the UI of M/L after stress and rest in MP-gated-SPECT studies. It is, therefore, recommended that patients eat a chocolate bar after radiotracer injection and before image acquisition.
Resumo:
Human virtual phantoms are being widely used to simulate and characterize the behavior of different organs, either in diagnosis stages but also to enable foreseeing the therapeutic effects obtained on a certain patient. In the present work a typical patient’s heart was simulated using XCAT2©, considering the possibility of a lesion and/or anatomical alteration being affecting the myocardium. These simulated images, were then used to carry out a set of parametric studies using Matlab©. Although performed in controlled sceneries, these studies are very important to understand and characterize the performance of the methodologies used, as well as to determine to what extent the relations between the perturbation introduced at the myocardium and the resulting simulated images can be considered conclusive.
Resumo:
Marked regional variations in myocardial activity that are not related to myocardial perfusion defects.Verify the influence of CT-AC inMPI results in patients with BMI between 30 and 35 and higher than 30 for male and female population.
Resumo:
Myocardial perfusion imaging (MPI) is used on a daily basis to access coronary blood flow in patients that are suspected or have known Coronary Artery Disease (CAD). A Single Photon Emission Computed Tomography (SPECT) or and Positron Emission Tomography (PET) scan are used to access regional blood flow quantification either at rest or stress, the imaging acquisition is connected to an Electrocardiogram (ECG) and it is able to determine and quantify other myocardial parameters like myocardial wall thickness and wall motion. PET is not used so broadly due to its high procedure cost, the proximity with cyclotron, where are produced the majority of radiopharmaceuticals used in PET, due to their shor thalf-life. This work is intended to carry out a review of the tests relating to radiopharmaceuticals that are used in clinical practice in SPECT or PET for assessment of myocardial perfusion, also focusing very promising radiopharmaceuticals that are under investigation or in clinical trials with great potential for conventional nuclear medicine or PET, proceeding to a comparative analysis of both techniques and respective radiopharmaceuticals used.