26 resultados para Multiobjective Evolutionary Algorithm
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.
Resumo:
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular, when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type. We prove under the common assumptions used in direct search for single objective optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step. Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.
Resumo:
The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.
Resumo:
In order to study the impact of premature birth and low income on mother–infant interaction, four Portuguese samples were gathered: full-term, middle-class (n=99); premature, middle-class (n=63); full-term, low income (n=22); and premature, low income (n=21). Infants were filmed in a free play situation with their mothers, and the results were scored using the CARE Index. By means of multinomial regression analysis, social economic status (SES) was found to be the best predictor of maternal sensitivity and infant cooperative behavior within a set of medical and social factors. Contrary to the expectations of the cumulative risk perspective, two factors of risk (premature birth together with low SES) were as negative for mother–infant interaction as low SES solely. In this study, as previous studies have shown, maternal sensitivity and infant cooperative behavior were highly correlated, as was maternal control with infant compliance. Our results further indicate that, when maternal lack of responsiveness is high, the infant displays passive behavior, whereas when the maternal lack of responsiveness is medium, the infant displays difficult behavior. Indeed, our findings suggest that, in these cases, the link between types of maternal and infant interactive behavior is more dependent on the degree of maternal lack of responsiveness than it is on birth status or SES. The results will be discussed under a developmental and evolutionary reasoning
Resumo:
This paper presents an algorithm to efficiently generate the state-space of systems specified using the IOPT Petri-net modeling formalism. IOPT nets are a non-autonomous Petri-net class, based on Place-Transition nets with an extended set of features designed to allow the rapid prototyping and synthesis of system controllers through an existing hardware-software co-design framework. To obtain coherent and deterministic operation, IOPT nets use a maximal-step execution semantics where, in a single execution step, all enabled transitions will fire simultaneously. This fact increases the resulting state-space complexity and can cause an arc "explosion" effect. Real-world applications, with several million states, will reach a higher order of magnitude number of arcs, leading to the need for high performance state-space generator algorithms. The proposed algorithm applies a compilation approach to read a PNML file containing one IOPT model and automatically generate an optimized C program to calculate the corresponding state-space.
Resumo:
Mestrado em Radioterapia.
Resumo:
This paper addresses the problem of optimal positioning of surface bonded piezoelectric patches in sandwich plates with viscoelastic core and laminated face layers. The objective is to maximize a set of modal loss factors for a given frequency range using multiobjective topology optimization. Active damping is introduced through co-located negative velocity feedback control. The multiobjective topology optimization problem is solved using the Direct MultiSearch Method. An application to a simply supported sandwich plate is presented with results for the maximization of the first six modal loss factors. The influence of the finite element mesh is analyzed and the results are, to some extent, compared with those obtained using alternative single objective optimization. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Radioterapia
Resumo:
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Resumo:
The calculation of the dose is one of the key steps in radiotherapy planning1-5. This calculation should be as accurate as possible, and over the years it became feasible through the implementation of new algorithms to calculate the dose on the treatment planning systems applied in radiotherapy. When a breast tumour is irradiated, it is fundamental a precise dose distribution to ensure the planning target volume (PTV) coverage and prevent skin complications. Some investigations, using breast cases, showed that the pencil beam convolution algorithm (PBC) overestimates the dose in the PTV and in the proximal region of the ipsilateral lung. However, underestimates the dose in the distal region of the ipsilateral lung, when compared with analytical anisotropic algorithm (AAA). With this study we aim to compare the performance in breast tumors of the PBC and AAA algorithms.
Resumo:
Conferência - 16th International Symposium on Wireless Personal Multimedia Communications (WPMC)- Jun 24-27, 2013
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica - Ramo de Energia