1 resultado para Multimodal medical image registration
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (112)
- Boston University Digital Common (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- Cambridge University Engineering Department Publications Database (51)
- CentAUR: Central Archive University of Reading - UK (7)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (3)
- Digital Commons at Florida International University (103)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (24)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- Glasgow Theses Service (1)
- Harvard University (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (18)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (24)
- Queensland University of Technology - ePrints Archive (203)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Uruguai (1)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (9)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (181)
- University of Queensland eSpace - Australia (7)
- University of Washington (3)
- WestminsterResearch - UK (4)
Resumo:
We evaluate the integration of 3D preoperative computed tomography angiography of the coronary arteries with intraoperative 2D X-ray angiographies by a recently proposed novel registration-by-regression method. The method relates image features of 2D projection images to the transformation parameters of the 3D image. We compared different sets of features and studied the influence of preprocessing the training set. For the registration evaluation, a gold standard was developed from eight X-ray angiography sequences from six different patients. The alignment quality was measured using the 3D mean target registration error (mTRE). The registration-by-regression method achieved moderate accuracy (median mTRE of 15 mm) on real images. It does therefore not provide yet a complete solution to the 3D–2D registration problem but it could be used as an initialisation method to eliminate the need for manual initialisation.