38 resultados para Motion Detection
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicações e Multimédia
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
The Wyner-Ziv video coding (WZVC) rate distortion performance is highly dependent on the quality of the side information, an estimation of the original frame, created at the decoder. This paper, characterizes the WZVC efficiency when motion compensated frame interpolation (MCFI) techniques are used to generate the side information, a difficult problem in WZVC especially because the decoder only has available some reference decoded frames. The proposed WZVC compression efficiency rate model relates the power spectral of the estimation error to the accuracy of the MCFI motion field. Then, some interesting conclusions may be derived related to the impact of the motion field smoothness and the correlation to the true motion trajectories on the compression performance.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures that can be used as optical transducers for fluorescent proteins detection using the Fluorescence Resonance Energy Transfer approach. Double structures composed by pin based aSiC:H cells are analyzed. The color discrimination is achieved by ac photocurrent measurement under different externally applied bias. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. An electrical model, supported by a numerical simulation gives insight into the device operation. Results show that the optimized a-SiC:H heterostructures act as voltage controlled optical filters in the visible spectrum. When the applied voltages are chosen appropriately those optical transducers can detect not only the selective excitation of specimen fluorophores, but also the subsequent weak acceptor fluorescent channel emission.
Resumo:
In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.
Resumo:
Wyner - Ziv (WZ) video coding is a particular case of distributed video coding (DVC), the recent video coding paradigm based on the Slepian - Wolf and Wyner - Ziv theorems which exploits the source temporal correlation at the decoder and not at the encoder as in predictive video coding. Although some progress has been made in the last years, WZ video coding is still far from the compression performance of predictive video coding, especially for high and complex motion contents. The WZ video codec adopted in this study is based on a transform domain WZ video coding architecture with feedback channel-driven rate control, whose modules have been improved with some recent coding tools. This study proposes a novel motion learning approach to successively improve the rate-distortion (RD) performance of the WZ video codec as the decoding proceeds, making use of the already decoded transform bands to improve the decoding process for the remaining transform bands. The results obtained reveal gains up to 2.3 dB in the RD curves against the performance for the same codec without the proposed motion learning approach for high motion sequences and long group of pictures (GOP) sizes.
Resumo:
The devastating impact of the Sumatra tsunami of 26 December 2004, raised the question for scientists of how to forecast a tsunami threat. In 2005, the IOC-UNESCO XXIII assembly decided to implement a global tsunami warning system to cover the regions that were not yet protected, namely the Indian Ocean, the Caribbean and the North East Atlantic, the Mediterranean and connected seas (the NEAM region). Within NEAM, the Gulf of Cadiz is the more sensitive area, with an important record of devastating historical events. The objective of this paper is to present a preliminary design for a reliable tsunami detection network for the Gulf of Cadiz, based on a network of sea-level observatories. The tsunamigenic potential of this region has been revised in order to define the active tectonic structures. Tsunami hydrodynamic modeling and GIS technology have been used to identify the appropriate locations for the minimum number of sea-level stations. Results show that 3 tsunameters are required as the minimum number of stations necessary to assure an acceptable protection to the large coastal population in the Gulf of Cadiz. In addition, 29 tide gauge stations could be necessary to fully assess the effects of a tsunami along the affected coasts of Portugal, Spain and Morocco.
Resumo:
The study of economic systems has generated deep interest in exploring the complexity of chaotic motions in economy. Due to important developments in nonlinear dynamics, the last two decades have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The inability to predict the behavior of dynamical systems in the presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we study a specific economic model from the literature. More precisely, a system of three ordinary differential equations gather the variables of profits, reinvestments and financial flow of borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from the chaotic firm model can be controlled without changing its original properties and the dynamics can be turned into the desired attracting time periodic motion (a stable steady state or into a regular cycle). The orbit stabilization is illustrated by the application of a feedback control technique initially developed by Romeiras et al. [1992]. This work provides another illustration of how our understanding of economic models can be enhanced by the theoretical and numerical investigation of nonlinear dynamical systems modeled by ordinary differential equations.
Resumo:
An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.
Resumo:
ZnO:Al/p (SiC:H)/i (Si:H)/n (SiC:H) large area image and colour sensor are analysed. Carrier transport and collection efficiency are investigated from dark and illuminated current-voltage (I-V) dependence and spectral response measurements under different optical and electrical bias conditions. Results show that the carrier collection depends on the optical bias and on the applied voltage. By changing the electrical bias around the open circuit voltage it is possible to filter the absorption at a given wavelength and so to tune the spectral sensitivity of the device. Transport and optical modelling give insight into the internal physical process and explain the bias control of the spectral response and the image and colour sensing properties of the devices.
Resumo:
Introdução – Numa era em que os tratamentos de Radioterapia Externa (RTE) exigem cada vez mais precisão, a utilização de imagem médica permitirá medir, quantificar e avaliar o impacto do erro provocado pela execução do tratamento ou pelos movimentos dos órgãos. Objetivo – Analisar os dados existentes na literatura acerca de desvios de posicionamento (DP) em patologias de cabeça e pescoço (CP) e próstata, medidos com Cone Beam Computed Tomography (CBCT) ou Electronic Portal Image Device (EPID). Metodologia – Para esta revisão da literatura foram pesquisados artigos recorrendo às bases de dados MEDLINE/PubMed e b-on. Foram incluídos artigos que reportassem DP em patologias CP e próstata medidos através de CBCT e EPID. Seguidamente foram aplicados critérios de validação, que permitiram a seleção dos estudos. Resultados – Após a análise de 35 artigos foram incluídos 13 estudos e validados 9 estudos. Para tumores CP, a média (μ) dos DP encontra-se entre 0,0 e 1,2mm, com um desvio padrão (σ) máximo de 1,3mm. Para patologias de próstata observa-se μDP compreendido entre 0,0 e 7,1mm, com σ máximo de 7,5mm. Discussão/Conclusão – Os DP em patologias CP são atribuídos, maioritariamente, aos efeitos secundários da RTE, como mucosite e dor, que afetam a deglutição e conduzem ao emagrecimento, contribuindo para a instabilidade da posição do doente durante o tratamento, aumentando as incertezas de posicionamento. Os movimentos da próstata devem-se principalmente às variações de preenchimento vesical, retal e gás intestinal. O desconhecimento dos DP afeta negativamente a precisão da RTE. É importante detetá-los e quantificá-los para calcular margens adequadas e a magnitude dos erros, aumentando a precisão da administração de RTE, incluindo o aumento da segurança do doente. - ABSTRACT - Background and Purpose – In an era where precision is an increasing necessity in external radiotherapy (RT), modern medical imaging techniques provide means for measuring, quantifying and evaluating the impact of treatment execution and movement error. The aim of this paper is to review the current literature on the quantification of setup deviations (SD) in patients with head and neck (H&N) or prostate tumors, using Cone Beam Computed Tomography (CBCT) or Electronic Portal Image Device (EPID). Methods – According to the study protocol, MEDLINE/PubMed and b-on databases were searched for trials, which were analyzed using selection criteria based on the quality of the articles. Results – After assessment of 35 papers, 13 studies were included in this analysis and nine were authenticated (6 for prostate and 3 for H&N tumors). The SD in the treatment of H&N cancer patients is in the interval of 0.1 to 1.2mm, whereas in prostate cancer this interval is 0.0 to 7.1mm. Discussion – The reproducibility of patient positioning is the biggest barrier for higher precision in RT, which is affected by geometrical uncertainty, positioning errors and inter or intra-fraction organ movement. There are random and systematic errors associated to patient positioning, introduced since the treatment planning phase or through physiological organ movement. Conclusion – The H&N SD are mostly assigned to the Radiotherapy adverse effects, like mucositis and pain, which affect swallowing and decrease secretions, contributing for the instability of patient positioning during RT treatment and increasing positioning uncertainties. Prostate motion is mainly related to the variation in bladder and rectal filling. Ignoring SD affects negatively the accuracy of RT. Therefore, detection and quantification of SD is crucial in order to calculate appropriate margins, the magnitude of error and to improve accuracy in RTE and patient safety.
Resumo:
Structures experience various types of loads along their lifetime, which can be either static or dynamic and may be associated to phenomena of corrosion and chemical attack, among others. As a consequence, different types of structural damage can be produced; the deteriorated structure may have its capacity affected, leading to excessive vibration problems or even possible failure. It is very important to develop methods that are able to simultaneously detect the existence of damage and to quantify its extent. In this paper the authors propose a method to detect and quantify structural damage, using response transmissibilities measured along the structure. Some numerical simulations are presented and a comparison is made with results using frequency response functions. Experimental tests are also undertaken to validate the proposed technique. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Optical colour sensors based on multilayered a-SiC:H heterostructures can act as voltage controlled optical filters in the visible range. In this article we investigate the application of these structures for Fluorescence Resonance Energy Transfer (FRET) detection, The characteristics of a-SiC:H multilayered structure are studied both theoretically and experimentally in several wavelengths corresponding to different fluorophores. The tunable optical p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures were produced by PECVD and tested for a proper fine tuning in the violet, cyan and yellow wavelengths. The devices were characterized through transmittance and spectral response measurements, under different electrical bias and frequencies. Violet, cyan and yellow signals were applied in simultaneous and results have shown that they can be recovered under suitable applied bias. A theoretical analysis supported by numerical simulation is presented.
Resumo:
In order to evaluate the capacity of laser scanning cytometry (LSC) to detect acid-fast bacilli directly on clinical samples, a comparison between Kinyoun-stained smears analyzed under light microscopy and propidium iodide-auramine-stained smears analyzed by LSC was performed. The results were compared with those for culture on BACTEC MGIT 960. LSC is a new, reliable methodology to detect Mycobacteria.
Resumo:
Faz-se nesta dissertação a análise do movimento humano utilizando sinais de ultrassons refletidos pelos diversos membros do corpo humano, designados por assinaturas de ultrassons. Estas assinaturas são confrontadas com os sinais gerados pelo contato dos membros inferiores do ser humano com o chão, recolhidos de forma passiva. O método seguido teve por base o estudo das assinaturas de Doppler e micro-Doppler. Estas assinaturas são obtidas através do processamento dos ecos de ultrassons recolhidos, com recurso à Short-Time Fourier Transform e apresentadas sobre a forma de espectrograma, onde se podem identificar os desvios de frequência causados pelo movimento das diferentes partes do corpo humano. É proposto um algoritmo inovador que, embora possua algumas limitações, é capaz de isolar e extrair de forma automática algumas das curvas e parâmetros característicos dos membros envolvidos no movimento humano. O algoritmo desenvolvido consegue analisar as assinaturas de micro-Doppler do movimento humano, estimando diversos parâmetros tais como o número de passadas realizadas, a cadência da passada, o comprimento da passada, a velocidade a que o ser humano se desloca e a distância percorrida. Por forma a desenvolver, no futuro, um classificador capaz de distinguir entre humanos e outros animais, são também recolhidas e analisadas assinaturas de ultrassons refletidas por dois animais quadrúpedes, um canino e um equídeo. São ainda estudadas as principais características que permitem classificar o tipo de animal que originou a assinatura de ultrassons. Com este estudo mostra-se ser possível a análise de movimento humano por ultrassons, havendo características nas assinaturas recolhidas que permitem a classificação do movimento como humano ou não humano. Do trabalho desenvolvido resultou ainda uma base de dados de assinaturas de ultrassons de humanos e animais que permitirá suportar trabalho de investigação e desenvolvimento futuro.