3 resultados para Molecular interactions

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvatochromic UV-Vis shifts of four indicators (4-nitroaniline, 4-nitroanisole, 4-nitrophenol and N,N-dimethy-1-4-nitro aniline) have been measured at 298.15 K in the ternary mixture methano1/1-propanol/acetonitrile (MeOH/1-PrOH/MeCN) in a total of 22 mole fractions, along with 18 additional mole fractions for each of the corresponding binary mixtures, MeOH/1-PrOH, 1-PrOH/MeCN and MeOH/MeCN. These values, combined with our previous experimental results for 2,6-dipheny1-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (Reichardt's betaine dye) in the same mixtures, permitted the computation of the Kamlet-Taft solvent parameters, alpha, beta, and pi*. The rationalization of the spectroscopic behavior of each probe within each mixture's whole mole fraction range was achieved through the use of the Bosch and Roses preferential solvation model. The applied model allowed the identification of synergistic behaviors in MeCN/alcohol mixtures and thus to infer the existence of solvent complexes in solution. Also, the addition of small amounts of MeCN to the binary mixtures was seen to cause a significant variation in pi*, whereas the addition of alcohol to MeCN mixtures always lead to a sudden change in a and The behavior of these parameters in the ternary mixture was shown to be mainly determined by the contributions of the underlying binary mixtures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.