4 resultados para Modified Delphi method
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde.
Resumo:
Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom. Methods: Images were acquired by varying a set of parameters: positions (antero-posterior (AP), posteroanterior (PA) and lateral), kilo-voltage peak (kVp) (66-90), source-to-image distance (SID) (150 to 200cm), broad focus and the use of a grid (grid in/out) to analyse the impact on E and image quality (IQ). IQ was analysed applying two approaches: objective [contrast-to-noise-ratio/(CNR] and perceptual, using 5 observers. Monte-Carlo modelling was used for dose estimation. Cohen’s Kappa coefficient was used to calculate inter-observer-variability. The angle was measured using Cobb’s method on lateral projections under different imaging conditions. Results: PA promoted the lowest effective dose (0.013 mSv) compared to AP (0.048 mSv) and lateral (0.025 mSv). The exposure parameters that allowed lower dose were 200cm SID, 90 kVp, broad focus and grid out for paediatrics using an Agfa CR system. Thirty-seven images were assessed for IQ and thirty-two were classified adequate. Cobb angle measurements varied between 16°±2.9 and 19.9°±0.9. Conclusion: Cobb angle measurements can be performed using the lowest dose with a low contrast-tonoise ratio. The variation on measurements for this was ±2.9° and this is within the range of acceptable clinical error without impact on clinical diagnosis. Further work is recommended on improvement to the sample size and a more robust perceptual IQ assessment protocol for observers.
Resumo:
This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.
Resumo:
With the aim of producing materials with enhanced optical and photocatalytic properties, titanate nanotubes (TNTs) modified by cobalt doping (Co-TNT) and by Na+ -> Co ion-exchange (TNT/Co) were successfully prepared by a hydrothermal method. The influence of the doping level and of the cobalt position in the TNT crystalline structure was studied. Although no perceptible influence of the cobalt ion position on the morphology of the prepared titanate nanotubes was observed, the optical behaviour of the cobalt modified samples is clearly dependent on the cobalt ions either substituting the Ti4+ ions in the TiO6 octahedra building blocks of the TNT structure (doped samples) or replacing the Na+ ions between the TiO6 interlayers (ion-exchange samples). The catalytic ability of these materials on pollutant photodegradation was investigated. First, the evaluation of hydroxyl radical formation using the terephthalic acid as a probe was performed. Afterwards, phenol, naphthol yellow S and brilliant green were used as model pollutants. Anticipating real world situations, photocatalytic experiments were performed using solutions combining these pollutants. The results show that the Co modified TNT materials (Co-TNT and TNT/Co) are good catalysts, the photocatalytic performance being dependent on the Co/Ti ratio and on the structural metal location. The Co(1%)-TNT doped sample was the best photocatalyst for all the degradation processes studied.