6 resultados para Model-driven engineering

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is proposed a new approach based on a methodology, assisted by a tool, to create new products in the automobile industry based on previous defined processes and experiences inspired on a set of best practices or principles: it is based on high-level models or specifications; it is component-based architecture centric; it is based on generative programming techniques. This approach follows in essence the MDA (Model Driven Architecture) philosophy with some specific characteristics. We propose a repository that keeps related information, such as models, applications, design information, generated artifacts and even information concerning the development process itself (e.g., generation steps, tests and integration milestones). Generically, this methodology receives the users' requirements to a new product (e.g., functional, non-functional, product specification) as its main inputs and produces a set of artifacts (e.g., design parts, process validation output) as its main output, that will be integrated in the engineer design tool (e.g. CAD system) facilitating the work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model updating methods often neglect that in fact all physical structures are damped. Such simplification relies on the structural modelling approach, although it compromises the accuracy of the predictions of the structural dynamic behaviour. In the present work, the authors address the problem of finite element (FE) model updating based on measured frequency response functions (FRFs), considering damping. The proposed procedure is based upon the complex experimental data, which contains information related to the damped FE model parameters and presents the advantage of requiring no prior knowledge about the damping matrix structure or its content, only demanding the definition of the damping type. Numerical simulations are performed in order to establish the applicability of the proposed damped FE model updating technique and its results are discussed in terms of the correlation between the simulated experimental complex FRFs and the ones obtained from the updated FE model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-based redistribution of their VM’s computational power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.