5 resultados para Model calibration
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
Sticky information monetary models have been used in the macroeconomic literature to explain some of the observed features regarding inflation dynamics. In this paper, we explore the consequences of relaxing the rational expectations assumption usually taken in this type of model; in particular, by considering expectations formed through adaptive learning, it is possible to arrive to results other than the trivial convergence to a fixed point long-term equilibrium. The results involve the possibility of endogenous cyclical motion (periodic and a-periodic), which emerges essentially in scenarios of hyperinflation. In low inflation settings, the introduction of learning implies a less severe impact of monetary shocks that, nevertheless, tend to last for additional time periods relative to the pure perfect foresight setup.
Resumo:
The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Resumo:
In this paper a realistic directional channel model that is an extension of the COST 273 channel model is presented. The model uses a cluster of scatterers and visibility region generation based strategy with increased realism, due to the introduction of terrain and clutter information. New approaches for path-loss prediction and line of sight modeling are considered, affecting the cluster path gain model implementation. The new model was implemented using terrain, clutter, street and user mobility information for the city of Lisbon, Portugal. Some of the model's outputs are presented, mainly path loss and small/large-scale fading statistics.