4 resultados para Migration of solutes
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Dissertação de natureza científica realizada para obtenção do grau de Mestre em Engenharia de Redes de Computadores e Multimédia
Resumo:
We present an analysis and characterization of the regional seismicity recorded by a temporary broadband seismic network deployed in the Cape Verde archipelago between November 2007 and September 2008. The detection of earthquakes was based on spectrograms, allowing the discrimination from low-frequency volcanic signals, resulting in 358 events of which 265 were located, the magnitudes usually being smaller than 3. For the location, a new 1-D P-velocity model was derived for the region showing a crust consistent with an oceanic crustal structure. The seismicity is located mostly offshore the westernmost and geologically youngest areas of the archipelago, near the islands of Santo Antao and Sao Vicente in the NW and Brava and Fogo in the SW. The SW cluster has a lower occurrence rate and corresponds to seismicity concentrated mainly along an alignment between Brava and the Cadamosto seamount presenting normal faulting mechanisms. The existence of the NW cluster, located offshore SW of Santo Antao, was so far unknown and concentrates around a recently recognized submarine cone field; this cluster presents focal depths extending from the crust to the upper mantle and suggests volcanic unrest No evident temporal behaviour could be perceived, although the events tend to occur in bursts of activity lasting a few days. In this recording period, no significant activity was detected at Fogo volcano, the most active volcanic edifice in Cape Verde. The seismicity characteristics point mainly to a volcanic origin. The correlation of the recorded seismicity with active volcanic structures agrees with the tendency for a westward migration of volcanic activity in the archipelago as indicated by the geologic record. (C) 2014 Elsevier B.V. All rights reserved.